18x(-17)+3x6x7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18 * 17 - 3 * 6 * 7
= 18 * 17 - 18 * 7
= 18 * ( 17 - 7 )
= 18 * 10
= 180
33 * ( 17 - 5 ) - 17 * ( 33 - 5 )
= ( 33 * 17 - 33 * 5 ) - ( 17 * 33 - 17 * 5 )
= 33 * 17 - 33 * 5 - 17 * 33 + 17 * 5
= 33 * 17 - 17 * 33 - 33 * 5 - 17 * 5
= 33 * ( 17 - 17 ) - 33 * 5 - 17 * 5
= 33 * 0 - 5 * ( 33 - 17 )
= 0 - 5 * 16
= 0 - 80
= -80
54 - 6 * ( 17 + 9 )
= 6 * 9 - 6 * 26
= 6 * ( 9 - 26 )
= 6 * ( -17 )
= -102
Từ phương trình \(\left(2\right)\): \(3x+4y=0\Leftrightarrow y=-\dfrac{3}{4}x\)
Thế vào phương trình \(\left(1\right)\) ta được:
\(\left(18x^2+\dfrac{9}{2}x-17\right)\left(21x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3\pm\sqrt{553}}{24}\\x=\pm\dfrac{\sqrt{21}}{21}\end{matrix}\right.\)
\(x=\dfrac{-3+\sqrt{553}}{24}\Rightarrow y=\dfrac{3-\sqrt{553}}{32}\)
\(x=\dfrac{-3-\sqrt{553}}{24}\Rightarrow y=\dfrac{3+\sqrt{553}}{32}\)
\(x=\dfrac{\sqrt{21}}{21}\Rightarrow y=-\dfrac{\sqrt{21}}{28}\)
\(x=-\dfrac{\sqrt{21}}{21}\Rightarrow y=\dfrac{\sqrt{21}}{28}\)
Vậy ...
Ta có x=17 => 18 = 17 + 1
Ta có :
A(x) = x^6 - 18x^5+ 18x^4-18x^3+18x^2-18x + 2
= 17^6-(17+1)*17^5+(17+1)*17^4-(17+1)*17^3+(17+1)*17^2-(17+1)*17+2
= 17^6-17^6-17^5+17^5+17^4-17^4-17^3+17^3+17^2-17^2-17+2
= -17+2
=-15
k cho mình nhé
có: với x,y là số nguyên
\(\left(5x-12y\right)⋮17\Rightarrow\left[\left(5x-12y\right)+17y\right]⋮17\Rightarrow5.\left(x+y\right)⋮17\)
mà \(\left(5;17\right)=1\Rightarrow x+y⋮17\)
\(\Rightarrow\left(x+y+17x\right)⋮17\Rightarrow\left(18x+y\right)⋮17\left(đpcm\right)\)
(5x−12y)⋮17⇒[(5x−12y)+17y]⋮17⇒5.(x+y)⋮17
mà \left(5;17\right)=1\Rightarrow x+y⋮17(5;17)=1⇒x+y⋮17
\Rightarrow\left(x+y+17x\right)⋮17\Rightarrow\left(18x+y\right)⋮17\left(đpcm\right)⇒(x+y+17x)⋮17⇒(18x+y)⋮17(đpcm)
18x-18=0
18x=0+18
18x=18
x=18:18
x=1
17(x-15)=0
(x-15)=0:17
(x-15)=0
x=15+0
x=15
\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)
Điều kiện: \(x\ge\frac{1}{3}\)
Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)
\(\Rightarrow x=a^2+\frac{1}{3}\)
Ta suy ra phương trình tương đương với
\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)
\(\Leftrightarrow54a^4+30a^2+27a-13=0\)
\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)
Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)
\(\Rightarrow3a-1=0\)
\(\Leftrightarrow a=\frac{1}{3}\)
\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)
\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{4}{9}\)