Minna wa aho, deso ne !
Aho, aho, aho, zettai AHO !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta ABC\)cân tại A;H là trung điểm BC =>AH đồng thời là đường cao
xét \(\Delta AHI\)và\(\Delta ACH\)có:
\(\widehat{AIH}=\widehat{AHC}\)
\(\widehat{HAI}\)chung
=>\(\Delta AHI=\Delta ACH\left(g.g\right)\)
=>\(\widehat{BCI}=\widehat{AHI}\)(2 cạnh tương ứng)
hay \(_{\widehat{BCI}=\widehat{AHO}}\)
a: Xét ΔAHO vuông tại H và ΔAKO vuông tại K có
AO chung
\(\widehat{HAO}=\widehat{KAO}\)
Do đó: ΔAHO=ΔAKO
b: Xét tứ giác AKOH có
\(\widehat{AKO}+\widehat{AHO}=180^0\)
Do đó: AKOH là tứ giác nội tiếp
Suy ra: \(\widehat{KOH}+\widehat{KAH}=180^0\)
hay \(\widehat{KAH}=60^0\)
cho tam giác ABC có A=90, BC=2a.Đường cao AH. O là trung điểm BC .Điểm A thay đổi sao cho BAC=90,BC=2a.Tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AHO lớn nhất?