Tìm x sao cho : (1/2)^x + (1/2)^x+4 =17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
$M=\frac{27}{x-15}-1$
Để $M$ min thì $\frac{27}{x-15}$ min.
Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất
$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15
$\Rightarrow x=14$
Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$
Bài 2:
\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)
$\Rightarrow x-4=-4\Leftrightarrow x=0$
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^4=17\)
\(\left(\frac{1}{2}\right)^x.\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\left(\frac{1}{2}\right)^x=\frac{17.16}{17}=16\)
\(\left(\frac{1}{2}\right)^x=16=\left(\frac{1}{2}\right)^{-4}\)
=> x = -4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left(1+\frac{1}{16}\right)=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x=16\)
\(\Leftrightarrow\frac{1}{2^x}=\frac{1}{2^{-4}}\)
\(\Rightarrow x=-4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 2:
a: \(\Leftrightarrow x+2\in\left\{3;9\right\}\)
hay \(x\in\left\{1;7\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^4=17\)
\(\left(\frac{1}{2}\right)^x.\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\left(\frac{1}{2}\right)^x=17:\frac{17}{16}\)
\(\left(\frac{1}{2}\right)^x=16\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^{-4}\)
\(\Rightarrow\)x = -4
Vậy x = -4
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Cần bổ sung thêm điều kiện $x,y$ là số nguyên. Khi $x,y$ nguyên thì $x-2, y-1$ cũng nguyên. Mà tích của chúng bằng $17$ nên ta có bảng sau:
x-2 | 1 | -1 | 17 | -17 |
y-1 | 17 | -17 | 1 | -1 |
x | 3 | 1 | 19 | -15 |
y | 18 | -16 | 2 | 0 |
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x - 140) : 7 = 33 - 23 . 3
(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3
x - 140 = 3 x 7 = 21
x = 21 + 140 = 161
b) x3 . x2 = 28 : 23
x5 = 25
=> x = 2
c) (x + 2) . ( x - 4) = 0
x = -2 hoặc 4
d) 3x-3 - 32 = 2 . 32 =
3x-3 - 9 = 2 . 9 = 18
3x-3 = 18 + 9 = 27
3x-3 = 33
=> x - 3 = 3
x = 3 + 3 = 6
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left(1+\frac{1^4}{2^4}\right)=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x=17:\frac{17}{16}=16\)
\(\Leftrightarrow\frac{1}{2^x}=16\Leftrightarrow1=2^{4+x}\Leftrightarrow4+x=0\Leftrightarrow x=-4\)