So sánh 958 và 1015 ta được 958....1015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=(10^14-1)/(10^15-11)`
`=>10A=(10^15-10)/(10^15-11)`
`=>10A=(10^15-11+1)/(10^15-11)`
`=>10A=1+1/(10^15-1)`
`=>A>1/10`
`B=(10^14+1)/(10^15+9)`
`=>10B=(10^15+10)/(10^15+9)`
`=>10A=(10^15+9+1)/(10^15+9)`
`=>10A=1+1/(10^15+9)`
Vì `1/(10^15-1)>1/(10^15+9)`
`=>10B>10A`
`=>B>A`
Giải:
\(A=\dfrac{10^{14}-1}{10^{15}-11}\)
\(10A=\dfrac{10^{15}-10}{10^{15}-11}\)
\(10A=\dfrac{10^{15}-11+1}{10^{15}-11}\)
\(10A=1+\dfrac{1}{10^{15}-11}\)
Tương tự:
\(B=\dfrac{10^{14}+1}{10^{15}+9}\)
\(10B=\dfrac{10^{15}+10}{10^{15}+9}\)
\(10B=\dfrac{10^{15}+9+1}{10^{15}+9}\)
\(10B=1+\dfrac{1}{10^{15}+9}\)
Vì \(\dfrac{1}{10^{15}-11}>\dfrac{1}{10^{15}+9}\) nên \(10A>10B\)
\(\Rightarrow A>B\)
Chúc bạn học tốt!
10 A = 10 16 + 10 10 16 + 1 = 1 + 9 10 16 + 1 10 B = 10 17 + 10 10 17 + 1 = 1 + 9 10 17 + 1
Vì 9 10 16 + 1 > 9 10 17 + 1 nên 10 A > 10 B
Vậy A > B
sua lai :
1015/1016<1016/1015
nen :1+1015/1016<1+1016/1015
\(1+\frac{1005}{1006}<1+1=2<1+1+\frac{1}{1005}=1+\frac{1006}{1005}\)
C=1009.1015=1009.1013+2.1009
=1011.1013-2.1013+2.1009
=1011.1013-8
Do 1011.1013-8>1011.1013-512
=>A>B
Đặt: (2^2015)+1/(2^2012)+1 là A và (2^2017)+1/(2^2014)+1 là B
1/8A=(2^2015)+1/(2^2015)+8=(2^2015)+8-7/(2^2015)+8=1-7/(2^2015)+8
1/8B=(2^2017)+1/(2^2017)+8=(2^2017)+8-7/(2^2017)+8=1-7/(2^2017)+8
Vì 2^2015+8<2^2017+8 nên 7/(2^2015+8)>7/(2^2017)+8 nên 1-7/(2^2015)+8<1-7/(2^2017)+8 từ đó suy ra B>A hay 2^2017+1/(2^2014)+1>(2^2015)+1/(2^2012)+1
ta có: 1-(1014/1015)= 1/1015
1-(2014/2015)= 1/2015
vì 1/1015>1/2015 =>1014/1015<2014/2015
VẬY 1014/1015<2014/2015
có : 1-1014/1015=1/1015
1-2014/2015=1/2015
do 1/1015>1/2015
suy ra 1014/1015<2014/2015
Ta có:
\(B=2^{2012}+2^{2011}+...+2^3+2^2+2+1\)
\(\Rightarrow2B=2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\)
\(\Rightarrow2B-B=\left(2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\right)-\left(2^{2012}+...+1\right)\)
\(\Rightarrow B=2^{2013}-1\)
\(A=2^{2003}.9+2^{2003}.1005\)
\(\Rightarrow A=2^{2003}.\left(9+1005\right)\)
\(\Rightarrow A=2^{2003}.1024\)
\(\Rightarrow A=2^{2003}.2^{10}\)
\(\Rightarrow A=2^{2013}\)
Vì \(2^{2013}-1< 2^{2013}\) nên A > B
Vậy A > B
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa