K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

`A=(10^14-1)/(10^15-11)`

`=>10A=(10^15-10)/(10^15-11)`

`=>10A=(10^15-11+1)/(10^15-11)`

`=>10A=1+1/(10^15-1)`

`=>A>1/10`

`B=(10^14+1)/(10^15+9)`

`=>10B=(10^15+10)/(10^15+9)`

`=>10A=(10^15+9+1)/(10^15+9)`

`=>10A=1+1/(10^15+9)`

Vì `1/(10^15-1)>1/(10^15+9)`

`=>10B>10A`

`=>B>A`

Giải:

\(A=\dfrac{10^{14}-1}{10^{15}-11}\) 

\(10A=\dfrac{10^{15}-10}{10^{15}-11}\) 

\(10A=\dfrac{10^{15}-11+1}{10^{15}-11}\) 

\(10A=1+\dfrac{1}{10^{15}-11}\) 

Tương tự:

\(B=\dfrac{10^{14}+1}{10^{15}+9}\) 

\(10B=\dfrac{10^{15}+10}{10^{15}+9}\) 

\(10B=\dfrac{10^{15}+9+1}{10^{15}+9}\) 

\(10B=1+\dfrac{1}{10^{15}+9}\) 

Vì \(\dfrac{1}{10^{15}-11}>\dfrac{1}{10^{15}+9}\) nên \(10A>10B\) 

\(\Rightarrow A>B\) 

Chúc bạn học tốt!

26 tháng 9 2019

10 A = 10 16 + 10 10 16 + 1 = 1 + 9 10 16 + 1 10 B = 10 17 + 10 10 17 + 1 = 1 + 9 10 17 + 1

Vì  9 10 16 + 1 > 9 10 17 + 1 nên  10 A > 10 B

Vậy A > B

17 tháng 5 2015

sua lai :

1015/1016<1016/1015

nen :1+1015/1016<1+1016/1015

\(1+\frac{1005}{1006}<1+1=2<1+1+\frac{1}{1005}=1+\frac{1006}{1005}\)

30 tháng 6 2015

C=1009.1015=1009.1013+2.1009

=1011.1013-2.1013+2.1009

=1011.1013-8

Do 1011.1013-8>1011.1013-512

=>A>B

30 tháng 6 2015

Cái này hồi lớp 6 mình học rồi

9 tháng 12 2016

Đặt: (2^2015)+1/(2^2012)+1 là A và (2^2017)+1/(2^2014)+1 là B

1/8A=(2^2015)+1/(2^2015)+8=(2^2015)+8-7/(2^2015)+8=1-7/(2^2015)+8

1/8B=(2^2017)+1/(2^2017)+8=(2^2017)+8-7/(2^2017)+8=1-7/(2^2017)+8

Vì 2^2015+8<2^2017+8 nên 7/(2^2015+8)>7/(2^2017)+8 nên 1-7/(2^2015)+8<1-7/(2^2017)+8 từ đó suy ra B>A hay 2^2017+1/(2^2014)+1>(2^2015)+1/(2^2012)+1

9 tháng 12 2016

mik nghĩ đề bị nhầm ở p/s 1

12 tháng 2 2015

ta có: 1-(1014/1015)= 1/1015
         1-(2014/2015)= 1/2015
vì 1/1015>1/2015 =>1014/1015<2014/2015
VẬY 1014/1015<2014/2015

12 tháng 2 2015

có : 1-1014/1015=1/1015

1-2014/2015=1/2015

do 1/1015>1/2015

suy ra 1014/1015<2014/2015

1 tháng 12 2016

Ta có:

\(B=2^{2012}+2^{2011}+...+2^3+2^2+2+1\)

\(\Rightarrow2B=2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\)

\(\Rightarrow2B-B=\left(2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\right)-\left(2^{2012}+...+1\right)\)

\(\Rightarrow B=2^{2013}-1\)

\(A=2^{2003}.9+2^{2003}.1005\)

\(\Rightarrow A=2^{2003}.\left(9+1005\right)\)

\(\Rightarrow A=2^{2003}.1024\)

\(\Rightarrow A=2^{2003}.2^{10}\)

\(\Rightarrow A=2^{2013}\)

\(2^{2013}-1< 2^{2013}\) nên A > B

Vậy A > B

 

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.

25 tháng 3 2024

KHI NÀO THÌ ĐC LÀM BÀI TIẾP Ạ 

24 tháng 11 2021

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa