K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

27 tháng 11 2021

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)

16 tháng 10 2021

\(PT\Leftrightarrow\left(x-\sqrt{2}y\right)\left(x+\sqrt{2}y\right)=1=1\cdot1=\left(-1\right)\left(-1\right)\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\sqrt{2}y=1\\x+\sqrt{2}y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-\sqrt{2}y=-1\\x+\sqrt{2}y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left(x;y\right)=\left\{\left(1;0\right);\left(-1;0\right)\right\}\)

16 tháng 10 2021

nhầm rồi =((

15 tháng 8 2019

x 2 − 2 y ( x − y ) = 2 ( x + 1 ) < = > x 2 − 2 ( y + 1 ) x + 2 ( y 2 − 1 ) = 0 ( 1 )

Để phương trình (1) có nghiệm nguyên x thì D' theo y phải là số chính phương

+ Nếu  Δ ' = 4 = > ( y − 1 ) 2 = 0 < = > y = 1  thay vào phương trình (1) ta có :

x 2 − 4 x = 0 < = > x ( 2 − 4 ) < = > x = 0 x − 4

+ Nếu  Δ ' = 1 = > ( y − 1 ) 2 = 3 < = > y ∉ Z .

+ Nếu  Δ ' = 0 = > ( y − 1 ) 2 = 4 < = > y = 3 y = − 1

+ Vi y = 3 thay vào phương trình (1) ta có:   x 2 − 8 x + 16 = 0 < = > ( x − 4 ) 2 = 0 < = > x = 4

+ Vi y = -1 thay vào phương trình (1) ta có:  x 2 = 0 < = > x = 0

Vậy phương trình (1) có 4 nghiệm nguyên  ( x ; y ) ∈ {(0;1);(4;1);(4;3);(0;-1)}

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 1:
$x^2y+4y=x+6$

$\Leftrightarrow y(x^2+4)=x+6$

$\Leftrightarrow y=\frac{x+6}{x^2+4}$

Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên

$\Rightarrow x+6\vdots x^2+4(1)$

$\Rightarrow x^2+6x\vdots x^2+4$

$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$

$\RIghtarrow 6x-4\vdots x^2+4(2)$

Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$

$\Rightarrow 40\vdots x^2+4$

$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)

$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$

Đến đây thay vào tìm $y$ thôi.

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 2:
 

Lấy PT(1) trừ PT (2) theo vế thu được:

$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$

Thay vào PT(1) thì:

$(2.\frac{5y-2}{3}+1)(y+2)=9$

$\Leftrightarrow 10y^2+19y-29=0$

$\Leftrightarrow (y-1)(10y+29)=0$

$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$

Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$

Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$

NV
6 tháng 3 2021

\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)

\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)

\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)

\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)

\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)

- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)

- Với \(x=2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn