K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 2 2021

\(I_7=\int\limits^3_0x^2\sqrt{10-x^2}xdx\)

Đặt \(\sqrt{10-x^2}=t\Rightarrow x^2=10-t^2\Rightarrow xdx=tdt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=\sqrt{10}\\x=3\Rightarrow t=1\end{matrix}\right.\)

\(I_7=\int\limits^1_{\sqrt{10}}\left(10-t^2\right)t.tdt=\int\limits^{\sqrt{10}}_1\left(t^4-10t^2\right)dt\)

\(=\left(\dfrac{1}{5}t^5-\dfrac{10}{3}t^3\right)|^{\sqrt{10}}_1\) (tới đây bạn tự tính ra kết quả nhé)

\(I_8=\int\limits^{\dfrac{\pi}{4}}_02sinx.cosx.cosxdx=-2\int\limits^{\dfrac{\pi}{4}}_0cos^2x.d\left(cosx\right)\)

\(=-\dfrac{2}{3}cos^3x|^{\dfrac{\pi}{4}}_0=...\)

NV
27 tháng 2 2021

\(I_9=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{sinx}{1+3cosx}dx\)

Đặt \(u=cosx\Rightarrow du=-sinx.dx\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=\dfrac{\pi}{2}\Rightarrow u=0\end{matrix}\right.\)

\(I_9=\int\limits^0_1\dfrac{-du}{1+3u}=\dfrac{1}{3}\int\limits^1_0\dfrac{d\left(3u+1\right)}{3u+1}=\dfrac{1}{3}ln\left(3u+1\right)|^1_0=\dfrac{1}{3}ln10\)

 

\(I_{10}=\int\limits^{\dfrac{\pi}{2}}_0sin^4x.\left(1-sin^2x\right)^2cosxdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow u=0\\x=\dfrac{\pi}{2}\Rightarrow u=1\end{matrix}\right.\)

\(I_{10}=\int\limits^1_0u^4\left(1-u^2\right)du=\int\limits^1_0\left(u^8-2u^6+u^4\right)du\)

\(=\left(\dfrac{1}{9}u^9-\dfrac{2}{7}u^7+\dfrac{1}{5}u^5\right)|^1_0=...\)

NV
30 tháng 6 2021

Làm biếng tính tích có hướng nên biến đổi đại số thuần túy:

Gọi \(M\left(x;y;z\right)\) là điểm bất kì thuộc đường thẳng cần tìm

\(\Rightarrow MA=MB=MC\)

\(\Rightarrow\left\{{}\begin{matrix}\left|\overrightarrow{MA}\right|=\left|\overrightarrow{MB}\right|\\\left|\overrightarrow{MB}\right|=\left|\overrightarrow{MC}\right|\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+y^2+\left(z+1\right)^2=\left(x-2\right)^2+\left(y-3\right)^2+\left(z+1\right)^2\\\left(x-2\right)^2+\left(y-3\right)^2+\left(z+1\right)^2=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y-6=0\\2x+y-z-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-6=0\\5y+z-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=-3\left(y-1\right)\\5\left(y-1\right)=-\left(z-5\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-3}{3}=\dfrac{y-1}{-1}\\\dfrac{y-1}{-1}=\dfrac{z-5}{5}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x-3}{3}=\dfrac{y-1}{-1}=\dfrac{z-5}{5}\)

30 tháng 6 2021

tối nay mn đông đủ quá :P

NV
12 tháng 7 2021

Nhìn đề bài và đáp án thì rõ ràng đề bài bị in sai

Cả 4 đáp án đều có dạng hàm dưới nguyên hàm là \(\dfrac{1}{sin^2\dfrac{x}{2}}\)

Trong khi đề bài lại là \(\dfrac{1}{sin\dfrac{x^2}{2}}\) (đúng thế này thì ko tính được nguyên hàm)

Kết luận: đề in ẩu, lỗi của người đánh máy

26 tháng 2 2023

(16x8x10)-(12x8x5)=800cm3

23 tháng 9 2023

\(33\times77+66\times77+77\)

\(=77\times\left(33+66+1\right)\)

\(=77\times100\)

\(=7700\)

31 tháng 3 2021

mk thấy cm \(\dfrac{a^2+b^2}{2}\ge ab\)   thì đúng hơn

2 tháng 4 2021

Sửa đề: \(\dfrac{a^2+b^2}{2}\ge ab\)

Ta có: \(\left(a-b\right)^2\ge0\) với mọi a, b

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge ab\)

Dấu "=" xảy ra khi a=b

 

Bài 4:

a: x=-3

b: x=-20

3:

Số tiền phải trả trước khi giảm giá lần 2 là:

15390000:95%=16200000(đồng)

Số tiền vốn là:

16200000:90%=18000000(đồng)