Tìm số tự nhiên n để (3n + 2) chia hết cho (2n – 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }

đây là toán lớp 6 nha bn
a mk chịu
b
vì 2n-3 : 2n+2
suy ra 2(2n-3) : 2n+2
4n-6: 2n+2
mà 2(2n+2):2n+2
4n+4 :2n+2
4n+ 4 -(4n-6) : 2n+2
.còn lại tự tính
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)


Giải:
+(3n\(^2\) + 2n + 2) ⋮ (3n + 1)
3.(3n\(^2\) + 2n + 2) ⋮ (3n + 1)
(9n\(^2+6n+6)\) ⋮ (3n + 1)
[(9n\(^2\) + 3n) + (3n + 1) + 5] ⋮ (3n+ 1)
[3n(3n + 1) + (3n + 1) + 5] ⋮ (3n + 1)
5 ⋮ (3n + 1)
(3n + 1) ∈ Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
3n+1 | -5 | -1 | 1 | 5 |
n | -2 | -2/3 | 0 | 4/3 |
n∈N | ktm | ktm | tm | ktm |
Theo bảng trên ta có: n = 0
Vậy n = 0
Ta có: \(3n^2+2n+2\) ⋮3n+1
=>\(3n^2+n+n+2\) ⋮3n+1
=>n+2⋮3n+1
=>3n+6⋮3n+1
=>3n+1+5⋮3n+1
=>5⋮3n+1
=>3n+1∈{1;-1;5;-5}
=>3n∈{0;-2;4;-6}
=>n∈{0;-2/3;4/3;-2}
mà n là số tự nhiên
nên n=0


n + 5 : hết cho n - 2
=> n - 2 + 7 : hết cho n - 2
=> 7 : hết cho n - 2
=> n - 2 thuộc { 1 ; 7} tự tính n
2n + 9 : hết cho n + 1
=> (2n+9) - 2(n+1) : hết cho n + 1
=> 7 : hết cho n + 1
tương tự câu 1
2n + 1 : hêt cho 6-n
=> (2n+1) + 2(6 - n) : hết cho 6 - n
=> 13 : hết cho 6 - n
tương tự câu 1,2
3n + 1 : hết ccho 11 - 2n
=> 2(3n + 1) + 3(11-2n) : hết cho 11 - 2n
=> 35 : hết cho 11 - 2n
tượng tự 1,2,3
3n + 5 : hết cho 4n + 2
=> 4(3n+5) - 3(4n+2) : hết cho 4n + 2
=> 14 : hết cho 4n + 2
tương tự 1,2,3,4
Ta có: 3n+2 = 2(3n+2) = 6n+4 chia hết cho 2n-1
2n-1 = 3(2n-1) = 6n-3 chia hết cho 2n-1
=> (6n+4) - ( 6n-3) chia hết cho 2n-1
=> 1 chia hết cho 2n-1
=> 2n-1 = 1 hoặc 2n-1=-1
2n=2 2n=0
n = 1 n=0
Vậy n=0 và n=1
_HT_