Cho A= \(\frac{n+2}{n-5}\) (n\(\in\) Z; n\(\ne\) 5)
Tìm điều kiện để A \(\in\) Z.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐểA\in Z\)thì:
\(n+2⋮n-5\)
=> \(\left[n-5\right]+7⋮n-5\)
=> 7 chia hết cho n - 5
=> n -5 E Ư[7] E {-7;-1;1;7}
=> n E {-2;4;6;12}
Vậy: n = -2; n = 4 n = 6; n = 12
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\)thì n-5 là ước nguyên của 7
\(n-5=1\Rightarrow n=6\)
\(n-5=7\Rightarrow n=12\)
\(n-5=-1\Rightarrow n=4\)
\(n-5=-7\Rightarrow n=-2\)
Ai thấy đúng k cho mink nha !!!
a) A = n/3 + n2/2 + n3/6
A = 2n+3n2+n3/6
A = 2n+2n2+n2+n3/6
A = (n+1)(2n+n2)/6
A = n(n+1)(n+2)/6
Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6
Hay A thuộc Z (đpcm)
b) B = n4/24 + n3/4 + 11n2/24 + n/4
B = n4+6n3+11n2+6n/24
B = n(n3+6n2+11n+6)/24
B = n(n3+n2+5n2+5n+6n+6)/24
B = n(n+1)(n2+5n+6)/24
B = n(n+1)(n2+2n+3n+6)/24
B = n(n+1)(n+2)(n+3)/24
Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24
Hay B nguyên (đpcm)
Ta có:
\(A=\frac{n+2}{n+5}=\frac{n+5-3}{n+5}=1-\frac{3}{n+5}\)
Để \(A\in Z\)thì \(\frac{3}{n+5}\in Z\)
\(\Leftrightarrow3⋮\left(n+5\right)\)
\(\Rightarrow n+5\inư\left(3\right)\)
\(\Rightarrow n+5\in\left\{1;-1;3;-3\right\}\)
Lập bảng :
n+5 | 1 | -1 | 3 | -3 |
n | -4 | -6 | -2 | -8 |
Vậy \(x\in\left\{-4;-6;-2;-8\right\}\)
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để A thuộc Z thì 7 chia hết cho n-5
\(n-5\inƯ\left(7\right)=\left\{-1;-7;1;7\right\}\)
n-5 | -1 | -7 | 1 | 7 |
n | -6 | -12 | -4 | 2 |
vì A \(\in\)Z
=> n + 2 chia hết cho n - 5
ta có n + 2 = n - 5 + 5 + 2 = n - 5 + 7
vì n - 5 chia hết cho n - 5
=> 7 phải chia hết cho n - 5
=> n - 5 \(\in\) Ư (7) = { 1 ; 7 ;; -1 ; -7 }
=> n = { -1 ; 4 ; 6 ; 12 }
ok
Bài 1
2.|x+1|-3=5
2.|x+1| =8
|x+1| =4
=>x+1=4 hoặc x+1=-4
<=>x= 3 hoặc -5
Bài 3
A=2/n-1
Để A có giá trị nguyên thì n là
2 phải chia hết cho n-1
U(2)={1,2,-1,-2}
Vậy A là số nguyên khi n=2;3;0;-1
k mk nha. Chúc bạn học giỏi
Thank you
bài 1 :
\(2\cdot|x+1|-3=5\)
\(2\cdot|x+1|=5+3\)
\(2\cdot|x+1|=8\)
\(|x+1|=8\div2\)
\(|x+1|=4\)
\(x=4-3\)
\(x=3\Rightarrow|x|=3\)
bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)
TH1:
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)
\(\Rightarrow n=5\)
TH2
\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)
\(\Rightarrow4=\frac{4-1}{1+2}=3\)
\(\Rightarrow n=3\)
\(n\in\left\{5;3\right\}\left(n\in Z\right)\)
Bài 3 có 2 trường hợp là \(A=1\)và \(A=2\)
TH1:
\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)
\(1=\frac{2}{2+1}=3\)
\(\Rightarrow n=3\)
TH2 :
\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)
\(2=\frac{2}{1+1}=2\)
\(\Rightarrow n=2\)
vậy \(\Rightarrow n\in\left\{3;2\right\}\)
N=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
= \(\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
= \(\frac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}+\frac{2\sqrt{x}+1}{\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
ĐKXĐ : x ≠ 4 ; x ≠ 9
Rút gọn :
=\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1-\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{2\sqrt{x}-9+\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+x-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
Để N =5 thì :
<=> \(\frac{x-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) =5
<=> x-5 = \(\left(5\sqrt{x}-10\right)\left(\sqrt{x}-3\right)\)
<=> x-5 = 5x - \(15\sqrt{x}\) - \(10\sqrt{x}\) +30
<=> x-5x-25\(\sqrt{x}\) =35
a) \(\sqrt{x}\ne3;\sqrt{x}\ne2\Rightarrow x\ne4;x\ne9\)
\(N=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
\(\Leftrightarrow N=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(\Leftrightarrow N=\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(\Rightarrow N=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(N=5\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}=5\)
\(\Leftrightarrow\sqrt{x}+1=5\sqrt{x}-15\Leftrightarrow4\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\) (thỏa mãn)
c) \(N=\frac{\sqrt{x}+1}{\sqrt{x}-5}=\frac{\sqrt{x}-5+6}{\sqrt{x}-5}=1+\frac{6}{\sqrt{x}-5}\)
để N \(\in\) Z thì \(\left(\sqrt{x}-5\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\sqrt{x}-5\) | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 36 | 16 | 49 | 9 | 64 | 4 | 121 | loại |