K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021
Mình ko biết
22 tháng 2 2024

Gọi d là ước chung của n+1 và 3n+4

Ta có n+1d; 3n+4d

Suy ra (3n+4)−-(3n+3)d => 1d => d = 1

Vậy hai số n+1 và 3n+4 (nN)

10 tháng 11 2021

Vì 28 là BCNN của (n+1)và (2n+1)

=> (2n+1) và (n+1) là ước của 28

Ư(28)={1;28-1;28;2;14;-2;-14;4;7;-4;-7}

Mà (2n+1) là số lẻ

=> 2n+1={7;-7}

=>2n={6;-6}

=>n={3;-3}

Mà n là số tự nhiên=> n=3

Vậy n=3

Cò phần trên là mik sai nhé!

10 tháng 11 2021

hak nao qua ko biet sory nha

15 tháng 1 2021

undefined

27 tháng 10 2017

Gọi d là UWCLN của n+1 và 2n+1

=>(2n+1) chia hết cho d, n chia hết cho d

=>n chia hết cho d, (n+1) chia hết cho d

Mà n và n+1 là 2 số tự nhiên liên tiếp

=>d=1

Ta có: ƯCLN.BCNN=tích 2 số

=>(n+1)(2n+1)=28.1

=>2n2+3n+1=28

=>2n2+3n-27=0

Giải PT ta được n=3 hoặc n=-4,5

Mà n là STN

=>n=3

Vậy n=3.

27 tháng 10 2017

10000+20=

8 tháng 1 2016

Minh Anh ơi tìm ra cách giải rồi

8 tháng 1 2016

mình đã nói rồi đó ! Mình cần cách làm chứ ko phải đáp án

15 tháng 11 2021

a: UCLN(3n+1;3n+10)=9

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Lời giải:

a. Gọi d là ƯCLN của $3n+1, 3n+10$

\(\Rightarrow \left\{\begin{matrix} 3n+1\vdots d\\ 3n+10\vdots d\end{matrix}\right.\Rightarrow (3n+10)-(3n+1)\vdots d\)

\(\Rightarrow 9\vdots d\)

\(\Rightarrow d=\left\{1;3;9\right\}\)

Mà $3n+1\vdots d$ nên $d$ không thể là $3,9$

$\Rightarrow d=1$

Vậy ƯCLN $(3n+1,3n+10)=1$

b.

Gọi $d$ là ƯCLN $(2n+1,n+3)$

\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ n+3\vdots d\end{matrix}\right.\left\{\begin{matrix} 2n+1\vdots d\\ 2n+6\vdots d\end{matrix}\right.\)

\(\Rightarrow (2n+6)-(2n+1)\vdots d\Rightarrow 5\vdots d\)

\(\Rightarrow d\in\left\{1;5\right\}\)
 

28 tháng 11 2018

a,Gọi d là UCLN(2n+1;3n+2)

Ta có:

3n+2 chia hết cho d

2n+1 chia hết cho d

=> 2(3n+2)-3(n+1)=1 chia hết cho d

=> d E {-1;1}

=> 2n+1 và 3n+2 luôn nguyên  tố cùng nhau

=> BCNN(2n+1,3n+2)=(2n+1)(3n+2)  (ĐPCM)

b, Gọi a là UCLN(2n+1;9n+6)

=> 2n+1 chia hết cho a

9n+6 chia hết cho a

=> 2(9n+6)-9(2n+1) chia hết cho a

=> 3 chia hết cho a=> a E {3;-3;1;-1}

Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc

2n+1 chia hết cho 3 <=> n=3k+1 (k E N)

Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1

còn nếu n khác: 3k+1

=> UCLN(2n+1;9n+6)=1