có 2 bình cách nhiệt , bình1 chưa m1=4kg nước ở nhiệt độ 20'c . Bình 2 chứa m2=8kg nước ở 40'c . Người ta đổ m(kg) từ bình 2 sang bình 1 . Sau khi nhiệt độ ở bình 1 đã ổn định , người ta lại đổ m(kg) từ bình 1 vào bình 2. Nhiệt độ ở bình 2 sau khi ổn định là 38'c . Hãy tính nhiệt độ ở bình 1 sau lần đổ thứ nhất ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(m\) là khối lượng nước rót cần tìm
Lần thứ nhất :\(m.c.\left(t-t_1\right)=m_2.c.\left(t_2-t\right)\)\(\Rightarrow m\left(t-20\right)=4.\left(60-t\right)\)\(\Rightarrow m=\frac{4.\left(60-t\right)}{t-20}\left(1\right)\)
Lần thứ hai :
\(m.c\left(t-t'\right)=\left(m_1-m\right).c\left(t'-t_1\right)\)
\(\Rightarrow m.\left(t-21,5\right)=\left(2-m\right).\left(21,5-20\right)\)
\(\Rightarrow m\left(t-21,5\right)=\left(2-m\right).1,5\left(2\right)\)
Thay thế (1) vào (2) :
Ta được : \(t=59,25^0C\left(3\right)\)
Thay thế (3) vào (1) ta được:
\(m=0,076\left(kg\right)\)
m₁ = 2kg
t₁ = 20ºC
m₂ = 4kg
t₂ = 60ºC
t₁' = 21,5ºC
gọi c là nhiệt dung riêng của nước
khi rót lần thứ nhất thì m(kg) nước ở t₁ = 20ºC thu nhiệt, nước bình 2 tỏa nhiệt
nhiệt độ cân bằng là t₂' (ºC) với 20 < t₂' < 60
ta có Phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm(t₂'-t₁) = cm₂(t₂-t₂')
m(t₂'-20) = 4(60-t₂') (1)
khi rót lần thứ 2 về bình 1 một lượng nước là m (kg) nước thì m (kg) nước ở t₂' > 20ºC = t₁ nên m(kg) nước tỏa nhiệt, nước trong bình m₁ thu nhiệt, nhiệt độ cân bằng là t₁' = 21,5ºC
* lượng nước trong bình m₁ bây h là m₁ - m
ta có phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm₁(t₁'-t₁) = cm(t₂'-t₁')
(2-m)(21,5 - 20) = m(t₂' - 21,5)
(2-m)1,5 = m(t₂' - 21,5)
m(t₂' - 21,5) = 1,5(2-m)
mt₂' - 21,5m = 3 - 1,5m
mt₂' - 20m = 3
m(t₂'-20) = 3 (2)
từ (1) và (2) ta có hệ:
[ m(t₂'-20) = 4(60-t₂')
[ m(t₂'-20) = 3 (2)
ta đc:
4(60-t₂') = 3
240 - 4t₂' = 3
=> 4t₂ = 237
=> t₂ = 59,25 (ºC)
=> m = 3/(t₂' - 20) = 3/(59,25 - 20)
m ~ 0,07 (kg) = 70 g
lần rót thứ 2: rót m = 0,07 kg từ bình 1 sang bình 2
bình 2 đang có 2kg nước ở t₂' = 59,25ºC
m (kg) nước ở t₁' = 21,5ºC
vậy nước bình 2 tỏa nhiệt, m kg nước thu nhiệt
nhiệt độ cân bằng là T ºC vs 21,5 < T < 59,25
phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm(T-t₁') = cm₂(t₂'-T)
0,07.(T - 21,5) = 4(59,25-T)
0,07T - 1,505 = 237 - 4T
4,007T = 238,505
=> T = 59,5 (ºC)
a, Ta có phương trình cân bằng nhiệt
\(Q_{toả_1}=Q_{thu_1}\\ m_2c\Delta t=mc\Delta t\\ 4\left(60-t_{cb_1}\right)=2.\left(t_{cb_1}-20\right)\\ 240-4t_{cb_1}=mt_{cb_1}-40\\ mt_{cb_1}+4t_{cb_1}=240+20\\ \Rightarrow t_{cb_1}=\dfrac{240+20}{m+4}\left(1\right)\\ Q_{toả_2}=Q_{thu_2}\)
\(mc\left(t_{cb_1}-21,95\right)=\left(2-m\right).c.1,95\\ mt_{cb_1}-m21,95=3,9-1,95m\\ mt_{cb_1}=3,9+20m\\ t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\)
Từ (1) và (2) Ta đc
\(\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\\ 240+20m^2=3,9m+20m^2+15,96+80m\\ \Rightarrow m\approx0,1\\ \Rightarrow t_{cb}=\dfrac{3,9+20.0,1}{0,1}=59^o\)
b,
\(Q_{toả}=Q_{thu}\\ 4c\left(59-t_{cb}\right)=0,1c\left(t_{cb}-21,95\right)\\ \Rightarrow t_{cb}\approx58,1\)
sai rồi hết
+thiếu lý luận
+thiếu tóm tắt
*Khi trút trong lần 1:
-Nhiệt lượng nước ở bình 1 lúc đầu thu vào là:
\(Q_{thu_1}=m_1.c.\left(t-t_1\right)=4.4200.\left(t-20\right)=16800.\left(t-20\right)\left(J\right)\).
-Nhiệt lượng nước trút từ bình 2 sang bình 1 tỏa ra là:
\(Q_{tỏa_1}=m.c.\left(t_2-t\right)=4200m.\left(40-t\right)=\left(J\right)\)
-Bỏ qua sự mất mát nhiệt, ta có phương trình cân bằng nhiệt:
\(Q_{thu_1}=Q_{tỏa_1}\)
\(\Leftrightarrow16800\left(t-20\right)=4200m\left(40-t\right)\)
\(\Leftrightarrow16800t-336000=168000m-4200t\)
\(\Leftrightarrow21000t=504000m\)
\(\Leftrightarrow t=24m\left(^oC\right)\).
*Lần 2:
-Vì nhiệt độ cân bằng lần 2 là 38oC nên nước ở bình 2 lúc đó tỏa nhiệt, còn lượng nước trút lần 2 thu nhiệt.
-Lượng nước ở bình 2 sau lần đầu trút là:
\(m_2'=m_2-m=8-m\left(kg\right)\)
-Nhiệt lượng nước trút từ bình 1 sang bình 2 thu vào là:
\(Q_{thu_2}=m.c.\left(t'-t\right)=4200m.\left(38-24m\right)\left(J\right)\)
-Nhiệt lượng nước ở bình 2 sau lần đầu trút tỏa ra là:
\(Q_{tỏa_2}=m_2'.c.\left(t_2-t'\right)=\left(8-m\right).4200.\left(40-38\right)=8400\left(8-m\right)\left(J\right)\)
-Bỏ qua sự mất mát nhiệt, ta có phương trình cân bằng nhiệt:
\(Q_{thu_2}=Q_{tỏa_2}\)
\(\Leftrightarrow4200m.\left(38-24m\right)=8400\left(8-m\right)\)
\(\Leftrightarrow159600m-100800m^2=67200-8400m\)
\(\Leftrightarrow168000m-100800m^2-67200=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(nhận\right)\\m=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\)Lượng nước đã trút trong mỗi lần là: \(m=1\left(kg\right)\) và nhiệt độ ở bình 1 sau lần đổ thứ nhất là: \(t=24m=24.1=24^oC\)
Còn nhiều người làm được bài này, không khiến bạn copy rồi ghi tham khảo nhé!
Muốn ghi tham khảo qua box Xã Hội chơi ;)
Gọi \(m\) là lượng nước chuyển đổi sau mỗi lần chuyển.
Giả sử \(t_1'\) là nhiệt độ cân bằng sau lần chuyển thứ nhất.
Gọi \(t_2'\) là nhiệt độ cân bằng sau lần chuyển thứ hai.
Sau lần chuyển thứ nhất:
Bảo toàn khối lượng: \(m_1+m=m_2-m\Rightarrow m=\dfrac{m_2-m_1}{2}=\dfrac{4-2}{2}=1kg\)
Bảo toàn nhiệt lượng: \(m_1c\left(t_1-t_1'\right)=mc\left(t_2-t_2'\right)\)
\(\Rightarrow2\cdot4200\cdot\left(20-t_1'\right)=1\cdot4200\cdot\left(60-t_2'\right)\) \((1)\)
Sau lần chuyển thứ hai:
Bảo toàn khối lượng: \(m_1+m=m_2\Rightarrow m=m_2-m_1=2kg\)
Bảo toàn nhiệt lượng: \(m_2c\left(t_2-t_2'\right)=mc\left(t_1-t_1'\right)\)
\(\Rightarrow4\cdot4200\cdot\left(60-t_2'\right)=1\cdot4200\cdot\left(30-t_1'\right)\) \((2)\)
Từ \((1)\) và \((2)\) \(\Rightarrow\left\{{}\begin{matrix}t_1'=\dfrac{130}{7}\approx18,57^oC\\t_2'=\dfrac{400}{7}\approx57,14^oC\end{matrix}\right.\)
a. Nhiệt độ cân bằng ở bình 2 và lượng nước đã rót là:
\(Q_{toa}=Q_{thu}\)
\(<=> m_2c(t_2-t)=mc(t-t_1)\)
\(<=> 4(60-t)=m(t-20)\)
\(<=> m=\dfrac{4(60-t)}{t-20}(1)\)
\(Q_{toa}=Q_{thu}\)
\(<=> mc(t-t')=(m_1-m)c(t'-t_1)\)
\(<=> m(t-21,95)=(2-m)(21,95-20)\)
\(<=> m(t-21,95)=3,9-1,95 m\)
\(<=> m(t-20)=3,9=> m=\dfrac{3,9}{t-20}(2)\)
Từ \((1)(2)\) \(=> \dfrac{4(60-t)}{t-20}=\dfrac{3,9}{t-20}\)
\(<=> 240-4t=3,9\)
\(<=> 4t=236,1=> t=59,025^oC\)
\(=> m=\dfrac{3,9}{59,025-20}=0,1kg\)
b. Nếu tiếp tục thực hiện lần thứ hai nhiệt độ cân bằng ở mỗi bình là:
\(Q_{toa}=Q_{thu}\)
\(<=> m_2c(t-t_2')=mc(t_2'-t')\)
\(<=> 4(59,025-t_2')=0,1(t_2'-21,95)\)
\(<=> t_2'=58,12^oC\)
\(Q_{toa}=Q_{thu}\)
\(<=>mc(t_2'-t_1')=(m_1-m)c(t_1'-t_1)\)
\(<=>0,1(58,12-t_1')=(2-0,1)(t_1'-21,95)\)
\(<=>t_1'=23,76^oC\)
- Khi đổ một lượng nước m (kg) từ bình 2 sang bình 1. nước ở bình 1 có nhiệt độ cân bằng là t1’.
- Ta có: m.c.(t2 - t1’) = m1c.(t1’- t1)
Hay: m.(t2 - t1’) = m1.(t1’- t1) (1)
- Sau khi đổ m (kg) từ bình 1 sang bình 2 thì nhiệt độ ở bình 2 sau khi cân bằng là t2’ ta lại có:
(m2 - m).c.(t2 - t2’) = m.c(t2’ - t1’)
Hay:
m2t2 - m2t2’ - mt2 + mt2’ = mt2’- mt1’
⇔ m(t2 - t1’) = m2( t2 - t2’) (2)
Hay : 4.(t1’ - 20) = 8.( 40 - 38) ⇔ t1’ = 24
Ta có phương trình cân bằng nhiệt ( lần 1)
\(Q_{toả_1}=Q_{thu_1}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\)
Ta có phương trình cân bằng nhiệt ( lần 2 )
\(Q_{toả_2}=Q_{thu_2}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=\left(2-m\right)c.1,95\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\)
Từ (1) và (2)
\(\Leftrightarrow\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\)
Giải phương trình trên ta được
\(\Rightarrow m\approx0,1kg\)
Thay m = 0,1kg ta được
\(\Leftrightarrow t_{cb}=59^o\)
Ta có phương trình cân bằng nhiệt lần 3
\(Q_{toả_3}=Q_{thu_3}\\ \Leftrightarrow4c\left(59-t_{cb}\right)=0,1c\left(t_{cb}-21,95\right)\\ \Rightarrow t_{cb}=58,1\)
* Tham khảo thoy nha :
Khi đổ lượng nước m từ bình 2 sang bình 1, gọi nhiệt độ cân bằng ở bình 1 là t1’. Ta có phương trình cân bằng nhiệt:
mc( t2 – t1’) = m1c ( t1’ – t1 )
<=>m( t2 – t1’ ) = m1(t1’ – t1)
Ta được: t1’ = (1)
Khi đổ lượng nước m từ bình 1 sang bình 2, gọi nhiệt độ cân bằng ở bình 2 là t2’. Ta có phương trình cân bằng nhiệt: mc( t2’ – t1’ ) = ( m2 – m )c(t2 – t2’ )
<=> mt2’ – mt1’ = ( m2 – m )( t2 – t2’ )
<=> mt2’ - ( m2 – m )( t2 – t2’ ) = mt1’
Ta được: t1’ = (2)
Từ (1) và (2) ta có =
Giải phương trình trên ta được:
m== =1kg
Thay m = 1kg vào (1) ta được: t1’ = = 24oC