tìm GTNN: C = |x+3| + |x-5|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Ta có : \(\left|x-\frac{2}{5}\right|\ge0;\left|x-\frac{3}{5}\right|\ge0\forall x\in R\)
=> \(\left|x-\frac{2}{5}\right|+\left|x-\frac{3}{5}\right|\ge0\)
Vì x ko thể đồng thời nhận hai giá trị
Nên GTNN của biểu thức là : \(\frac{1}{5}\) khi x = \(\frac{2}{5},\frac{3}{5}\)
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Áp dụng tính chất của GTTĐ ta có :
C = |x - 2| + |x - 3| + |x - 5| + |x - 7| > |x - 2 + x - 3 + x - 5 + x - 7| = |4x - 17|
Vì |4x - 17| > 0 nên GTNN của |4x - 17| = 0
Do đó C > 0 nên GTNN của C là 0 <=> |4x - 17| = 0 <=> x = \(\frac{17}{4}\)
tịt...........xin bó tay vì...........em......chưa........12...ahihi
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
gtnn của bài này là 8
ta thấy |x+3|;|x-5|> hoặc = 0
=> để C = |x+3| + |x-5| nhỏ nhất thì |x+3|=0 và |x-5| =0
=> GTNN:C=0