K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 2 2021

\(x^3-2\sqrt{2}x^2+6x-4\sqrt{2}=0\)

\(\Leftrightarrow\left(x^3-\sqrt{2}x^2+4x\right)-\left(\sqrt{2}x^2+2x-4\sqrt{2}\right)=0\)

\(\Leftrightarrow x\left(x-\sqrt{2}x+4\right)-\sqrt{2}\left(x-\sqrt{2}x+4\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^2-\sqrt{2}x+4\right)=0\)

\(\Leftrightarrow x=\sqrt{2}\)

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

18 tháng 12 2020

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

18 tháng 12 2020

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

3 tháng 7 2020

\(ĐK:\orbr{\begin{cases}x\le1-\sqrt{2}\\1+\sqrt{2}\le x\le3\end{cases}}\)

\(\sqrt{2x^2-4x-2}+\left(x-1\right)^2\sqrt{12x-4}=\left(8-x\right)\sqrt{3-x}\)\(\Leftrightarrow\sqrt{2x^2-4x-2}-\sqrt{3-x}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\frac{2x^2-3x-5}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\left(2x^2-3x-5\right)\left(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}\right)=0\)(*)

Mà ta có thể thấy được: \(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}>0\)nên từ phương trình (*) suy ra \(2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)(t/m điều kiện)

Vậy phương trình có tập nghiệm \(S=\left\{-1;\frac{5}{2}\right\}\)

4 tháng 7 2020

thấy sai sai)):

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

a.

$x^2-11=0$

$\Leftrightarrow x^2=11$

$\Leftrightarrow x=\pm \sqrt{11}$

b. $x^2-12x+52=0$

$\Leftrightarrow (x^2-12x+36)+16=0$

$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)

Vậy pt vô nghiệm.

c.

$x^2-3x-28=0$

$\Leftrightarrow x^2+4x-7x-28=0$

$\Leftrightarrow x(x+4)-7(x+4)=0$

$\Leftrightarrow (x+4)(x-7)=0$

$\Leftrightarrow x+4=0$ hoặc $x-7=0$

$\Leftrightarrow x=-4$ hoặc $x=7$

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

d.

$x^2-11x+38=0$

$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$

$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)

Vậy pt vô nghiệm

e.

$6x^2+71x+175=0$

$\Leftrightarrow 6x^2+21x+50x+175=0$

$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$

$\Leftrightarrow (3x+25)(2x+7)=0$

$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$

$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290