thực hiện phép tính ,tìm a,b để a chia hết cho b
x^3+3x^2-ax+b chia cho x^2-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ làm cách chia nha còn bạn mún cách nào thì bảo mình làm lại
a)
x^3 +ax+b x^2+2x-2 x-2 x^3+2x^2-2x - -2x^2+(a+2)x+b -2x^2-4x+4 - (a+2+4)x+(b-4)
Để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)
\(\Leftrightarrow\hept{\begin{cases}a+2+4=0\\b-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)
Vậy \(\hept{\begin{cases}a=-6\\b=4\end{cases}}\)để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)
b) dùng phương pháp xét giá trị riêng
Đặt \(f\left(x\right)=ax^3+bx^2+5x-50\)
Ta có: \(f\left(x\right)\)chia hết cho\(x^2+3x-10\)
\(\Rightarrow f\left(x\right)=\left(x^2+3x-10\right).q\left(x\right)\)
\(\Rightarrow f\left(2\right)=\left(2^2+2.3-10\right).q\left(2\right)\)
\(=0\)
\(\Leftrightarrow a.2^3+b.2^2+5.2-50=0\)
\(\Leftrightarrow8a+4b-40=0\)
\(\Leftrightarrow4\left(2a+b-10\right)=0\)
\(\Leftrightarrow2a+b=10\left(1\right)\)
Lai có : \(f\left(-5\right)=\left[\left(-5\right)^2+3.\left(-5\right)-10\right].q\left(-5\right)\)
\(=0\)
\(\Leftrightarrow a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\)
\(\Leftrightarrow-125a+25b-25-50=0\)
\(\Leftrightarrow-125a+25b-75=0\)
\(\Leftrightarrow25\left(-5a+b-3\right)=0\)
\(\Leftrightarrow-5a+b=3\left(2\right)\)
Lấy (1) trừ (2) ta được: \(\left(2a+b\right)-\left(-5a+b\right)=10-3\)
\(\Leftrightarrow7a=7\)
\(\Leftrightarrow a=1\)
Thay a=1 vào (1 ) ta được: b=8
Vậy a=1 và b=8
Thiếu đề * bổ sung : tìm a để A chia hết cho B
x^3 - x^2 + 3x - 2a + 2 x - 2 x^2 + 1 + 3 x^3 - 2x^2 x^2 + 3x x^2 - 2 3x - 2a + 4 3x - 2 -2a + 6
Để \(A⋮B\Rightarrow-2a+6=0\)
\(\Leftrightarrow-2a=-6\Leftrightarrow a=3\)
\(3x^3+ax^2+bx+9=\left(x^2-9\right)\left(3x+a\right)+\left(b+27\right)x+9\left(a+1\right)\)
Phép chia trên là chia hết khi và chỉ khi \(b+27=0\text{ và }a+1=0\Leftrightarrow b=-27\text{ và }a=-1\)
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
\(\left(x^3+3x^2-ax+b\right):\left(x^2-2\right)\\ =\left(x^3-2x+3x^2-6+2x-ax+b+6\right):\left(x^2-2\right)\\ =\left[x\left(x^2-2\right)+3\left(x^2-2\right)+x\left(2-a\right)+\left(b+6\right)\right]:\left(x^2-2\right)\\ =x+3\left(\text{dư }x\left(2-a\right)+\left(b+6\right)\right)\)
Để phép chia hết thì \(\left\{{}\begin{matrix}2-a=0\\b+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-6\end{matrix}\right.\)