Cho S= 1+3+32 + 33 +34+.....+350+351. Chứng tỏ S là hợp số
giúp mình với, mai mk phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3+3^2+3^3+...+3^8+3^9\)
\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+...+3^8\right)⋮4\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)
Ta thấy : các số hạng trong tổng S đều \(>\frac{7}{35}\)
\(\Rightarrow S>\frac{7}{35}+\frac{7}{35}+\frac{7}{35}+\frac{7}{35}+\frac{7}{35}\)
\(\Rightarrow S>\frac{35}{35}\)
\(\Rightarrow S>1\) ( đpcm )
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
Ta có:
\(1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của 3
Đặt \(S = \frac{1}{31} + \frac{1}{32} + \frac{1}{33} + . . . + \frac{1}{59} + \frac{1}{60}\)
S có 30 số hạng.Nhóm thành ba nhóm, mỗi nhóm có 10 số hạng
\(S = \left(\right. \frac{1}{31} + \frac{1}{32} + . . . + \frac{1}{40} \left.\right) + \left(\right. \frac{1}{41} + \frac{1}{42} + \frac{1}{43} + . . . + \frac{1}{50} \left.\right) + \left(\right. \frac{1}{51} + \frac{1}{52} + . . . + \frac{1}{60} \left.\right)\)
\(S < \left(\right. \frac{1}{30} + \frac{1}{30} + . . . + \frac{1}{30} \left.\right) + \left(\right. \frac{1}{40} + \frac{1}{40} + . . . + \frac{1}{40} \left.\right) + \left(\right. \frac{1}{50} + \frac{1}{50} + . . . + \frac{1}{50} \left.\right)\)
\(S < \frac{10}{30} + \frac{10}{40} + \frac{10}{50}\)
\(S < \frac{47}{60} < \frac{50}{60} = \frac{5}{6}\)(1)
\(S > \left(\right. \frac{1}{40} + \frac{1}{40} + . . . + \frac{1}{40} \left.\right) + \left(\right. \frac{1}{50} + \frac{1}{50} + \frac{1}{50} + . . . + \frac{1}{50} \left.\right) + \left(\right. \frac{1}{60} + \frac{1}{60} + . . . + \frac{1}{60} \left.\right)\)
\(S > \frac{10}{40} + \frac{10}{50} + \frac{10}{60}\)
\(S > \frac{37}{60} > \frac{35}{60} \left(\right. 2 \left.\right)\)
Từ (1) và (2) => \(\frac{7}{12} < S < \frac{5}{6}\)
hay \(\frac{7}{12} < \frac{1}{31} + \frac{1}{32} + \frac{1}{33} + . . . + \frac{1}{59} + \frac{1}{60} < \frac{5}{6}\)
=> S = [ ( 3 + 32 + 33 + ... + 352 ) - ( 1 + 3 + 32 + ... + 351 ) ] : 2
=> S = ( 352 - 1 ) : 2 => S = [ ( 34 )208 - 1 ] : 2 = ( 81208 - 1 ) : 2
= ( ....1 - 1 ) : 2 = .....0 : 2 = ......5
Vì S có trên 3 ước là 1 ; S và 5 => S là hợp số
S= 1+3+32+33+34+...+350+351( Có 52 số hạng)
S=(1+3)+(32+33)+...+(350+351) (Có 52:2=26 nhóm)
S=(1+3)+32.(1+3)+34.(1+3)+....+350.(1+3)
Vì 1+3=4
S=4+32.4+34.4+....+350.4
S=4.(1+32+34+...+350) chia hết cho 4
S là hợp số