5^x = 125 tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^x\cdot5^3=125\)
\(\Rightarrow5^x\cdot5^3=5^3\)
\(\Rightarrow5^{x+3}=5^3\)
\(\Rightarrow x+3=3\)
\(\Rightarrow x=3-3\)
\(\Rightarrow x=0\)
Vậy: x = 0
`125/5^x=5`
`-> 125/5^x=5/1`
`-> 5*5^x=125`
`->`\(5^{1+x}=125\)
`->`\(5^{1+x}=5^3\)
`->`\(x+1=3\)
`-> x=3-1`
`-> x=2`
Vậy, `5^x=5^2`.
\(\left(x+5\right)+\left(x+10\right)+...+\left(x+25\right)-125=150\)
\(\Leftrightarrow x+5+x+10+...+x+25-125=150\)
\(\Leftrightarrow5x-50=150\)
\(\Leftrightarrow5x=100\)
\(\Leftrightarrow x=\dfrac{100}{5}=20\)
Vậy \(x=20\)
125 : x + 75 : x = 5
(125 + 75) : x = 5
200 : x = 5
x = 200 : 5
x = 40
125 : x + 75 : x = 5
(125 + 75) : x = 5
200 : x = 5
x = 200 : 5
x = 40
Có : \(\dfrac{x}{5}=\dfrac{125}{x}\)
\(\Leftrightarrow x^2=5.125\)
\(\Leftrightarrow x=\pm25\)
Có : \(\dfrac{x}{5}=\dfrac{125}{x}\)
\(\Leftrightarrow x^2=5.125\)
\(\Leftrightarrow x=\pm25\)
\(x^3\) + 125 + (\(x\) + 5)(\(x\) - 25) = 0
(\(x^3\) + 53) + (\(x\) + 5)(\(x\) - 25) = 0
(\(x\) + 5)(\(x^2\) - 5\(x\) + 25) + (\(x\) + 5)(\(x\) - 25) =0
(\(x\) + 5)(\(x^2\) - 5\(x\) + 25 + \(x\) - 25) = 0
(\(x\) + 5)(\(x^2\) - 4\(x\)) = 0
\(x\)(\(x\) + 5)(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x=0\\x+5=0\\x-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\\x=4\end{matrix}\right.\)
( 5 x − 19 ) + ( 3 x + 24 ) = 125
. 5 x − 19 + 3 x + 24 = 125
8 x + 5 = 125
8 x = 120
x = 15
5x=125
=>5x=53
=>x=3
=3 bạn nhé