Tìm các số nguyên x;y thoả mãn
a)x.(y+1)=-7
b)2.xy+x+y=7
Giúp mình câu này với(Lưu ý:Giải chi tiết)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
Giải:
a) Vì (x-5) là Ư(6)={-6;-3;-2;-1;1;2;3;6}
Ta có bảng giá trị:
x-5=-6 ➜x=-1
x-5=-3 ➜x=2
x-5=-2 ➜x=3
x-5=-1 ➜x=4
x-5=1 ➜x=6
x-5=2 ➜x=7
x-5=3 ➜x=8
x-5=6 ➜x=11
Vậy x ∈ {-1;2;3;4;5;6;7;8;11}
b) Vì (x-1) là Ư(15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng giá trị:
x-1=-15 ➜x=-14
x-1=-5 ➜x=-4
x-1=-3 ➜x=-2
x-1=-1 ➜x=0
x-1=1 ➜x=2
x-1=3 ➜x=4
x-1=5 ➜x=6
x-1=15 ➜x=16
Vậy x ∈ {-14;-4;-2;0;2;4;6;16}
c) x+6 ⋮ x+1
⇒x+1+5 ⋮ x+1
⇒5 ⋮ x+1
⇒x+1 ∈ Ư(5)={-5;-1;1;5}
Ta có bảng giá trị:
x+1=-5 ➜x=-6
x+1=-1 ➜x=-2
x+1=1 ➜x=0
x+1=5 ➜x=4
Vậy x ∈ {-6;-2;0;4}
Chúc bạn học tốt!
a) Ta có (x-5)là Ư(6)
\(\Rightarrow\)(x-5)\(\in\)\(\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
\(\Rightarrow\)x\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)
Vậyx\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)
b)Ta có (x-1) là Ư(15)
\(\Rightarrow\left(x-1\right)\in\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(\Rightarrow\)x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
Vậy x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
c)Ta có (x+6) \(⋮\) (x+1)
=(x+1)+5\(⋮\) (x+1)
Mà (x+1)\(⋮\) (x+1) nên để (x+6) \(⋮\) (x+1) thì 5 \(⋮\) (x+1)
Nên (x+1)\(\in\)Ư(5)
\(\Rightarrow\)x+1\(\in\)\(\left\{5;1;-1;-5\right\}\)
\(\Rightarrow x\in\left\{4;0;-2;-6\right\}\)
a) Để P là phân số thì x-3 khác 0
và x khác -3
b) 5/1
0/-4
1/-3
c) để P là số nguyên thì x+1 chia hết cho x-3
--> (x-3)+4 chia hết cho x-3
--> 4 chia hết cho x-3
--> x-3 thuộc Ư(4)={1;2;4;-1;-2;-4}
Với x-3=1 => x=4
Với x-3=2 => x=5
Với x-3=4 => x=7
Với x-3=(-1) =>x=2
Với x-3=(-2) => x=1
Với x-3=(-4) => x=(-1)
Vậy.....
a) A là phân số ⇔ x + 5 ≠ 0 ⇔ x ≠ -5
b) A là một số nguyên ⇔ (x – 2) ⋮ ( x + 5)
Ta có: x – 2 = [(x + 5) – 7] ⋮ ( x + 5) ⇔ 7 ⋮ ( x + 5) ⇔ x + 5 là ước của 7
x + 5 ∈ { 1 ; -1 ; 7 ; -7 }
x ∈ { -4 ; -6 ; 2 ; -12 }
cau a.de A la phan so thi x e z va x khac -5 cau b:ta co x-2/x+5=x+5-7/x+5 vi x+5 chia het cho x+5 nen 7 chia het cho x+5 suy ra x+5 e B(7)={7,-7,1,-1} neu x+5=-7 thi x = -12 x+5=7 thi x=2 x+5=1 thi x=-4 x+5=-1 thi x=-6
Cho biểu thức A=x-2/x+5
a)Tìm các số nguyên x để A là phân số
b)Tìm các số nguyên x để A là số nguyên
a, để x-2/x-5 là phân số thì x-2/x-5 là phân số tối giản
suy ra x-2 không chia hết cho x+5
vậy x thuộc Z
b, để x-2/x+5 là số nguyên thì x-2 chia hết cho x+5
x-2=x+5-7
suy ra x+5-7chia hết cho x+5
mà x+5 chia hết cho x+5 nên : -7 chia hết cho x+5
vậy x=
\(A=\frac{x-2}{x+5}\)
a) Để A là phân số => \(x+5\ne0\)=> \(x\ne-5\)
b) \(A=\frac{x-2}{x+5}=\frac{x+5-7}{x+5}=1-\frac{7}{x+5}\)
Để A là số nguyên => \(\frac{7}{x+5}\)là số nguyên
=> \(7⋮x+5\)
=> \(x+5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
x+5 | -7 | -1 | 1 | 7 |
x | -12 | -6 | -4 | 2 |
Vậy x thuộc các giá trị trên thì A là số nguyên
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
Đáp án:
Giải thích các bước giải: a) x-5 ∈ Ư(6)={-1;1;-2;2;-3;3;-6;6} => x∈{4;6;3;7;2;8;-1;11} b) x-1∈ Ư(15)={-1;1;-3;3;-5;5;-15;15} => x∈ { 0;2;-2;4;-4;6;-14;16}
c) x+6 chia hết cho x+1 => x+1+5 chia hết cho x+1 => 5 chia hết cho x+1 (vì x+1 chia hết cho x+1) => x+1 ∈ Ư(5)={-1;1;-5;5} => x∈{ -2;0;-6;4}
cho và share nhé
\(\sqrt[]{}\partial\underrightarrow{ }\sqrt[]{}_{ }\sqrt[]{\begin{matrix}&&\\&&\\&&\end{matrix}}\sqrt{ }\nu\)