Rút gọn biểu thức sau: (x - 1)*(x - 1) - x^2
giúp thyy dới mụi người ơiii<33
thyy cảm ơn nhaa!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)^2+4\left(x+2\right)\left(x-2\right)+\left(x-4\right)^2\\ =x^2+4x+4+4x^2-16+x^2-8x+16\\ =6x^2-4x+4\)
(x + 2)2 + 4(x + 2)(x - 2) + (x - 4)2
<=> x2 + 4x + 4 + 4(x2 - 4) + x2 - 8x + 16
<=> x2 + 4x + 4 + 4x2 - 16 + x2 - 8x + 16
<=> x2 + 4x2 + x2 + 4x - 8x + 4 - 16 + 16
<=> 6x2 - 4x + 4
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5.\left(x+1\right)}\)
\(A=\left(\frac{x^2+2x+1}{\left(x+1\right).\left(x-1\right)}-\frac{x^2-2x+1}{\left(x+1\right).\left(x-1\right)}\right):\frac{2x}{5.\left(x+1\right)}\)
\(A=\frac{x^2+2x+1-x+2x-1}{\left(x+1\right).\left(x-1\right)}\cdot\frac{5.\left(x+1\right)}{2x}\)
\(A=\frac{4x}{\left(x+1\right).\left(x-1\right)}\cdot\frac{5.\left(x+1\right)}{2x}=\frac{10}{x-1}\)
a)(x-3)(x+3)-(x+5)2+(x+1)(x+2)
=x2-9-x-10x-25+x2+2x+x+2
=2x2-8x-32
b)2 . 25 - 8 . 5 - 32=78
Đặt biểu thức đã cho là A.
Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)
= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))
Rút gọn triệt tiêu ta được 2A=3^64 - 1
=> A = (3^64 - 1)/2
\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)
Đặt \(\sqrt{x}=t\)
\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)
a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)
\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
a,hđt số 3 = \(\left(a^2+2a\right)^2-9\)
b,hđt số 3=\(\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)(đổi dấu làm ngoặc khi trước nó là dấu trừ)=\(x^2-\left(y-6\right)^2\)
a) \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left(a^2+2a\right)^2+3.\left(-3\right)\)
\(=\left(a^2+2a\right)^2-9\)
b) \(\left(x-y+6\right)\left(x+y-6\right)\)
\(=\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)
\(=x^2-\left(y-6\right)^2\)
\(=x^2-1-x^2=-1\)