GIÚP MÌNH VỚI:
CMR: 41^2015 - 6 chia hết cho 7
(Chứng minh bằng phép đồng du nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 20 chia hết cho 12 , 36 chia hết cho 12 nên 120a+36b chia hết cho 12
a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005 => 20062006 - 20062005 chia hết cho 2005.
b) 79m+1 - 79m = 79m x 79 - 79m = 79m x (79 - 1) = 79m x 78 chia hết cho 78 => 79m+1 - 79m chia hết cho 78.
c) 257 + 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1) = 512 x 5 x 6 = 512 x 30 chia hết cho 30 => 257 + 513 chia hết cho 30.
d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 56 x (64 - 5) = 56 x 49 chia hết cho 49 => 106 - 57 chia hết cho 49.
e) 710 - 79 - 78 = 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41 => 710 - 79 - 78 chia hết cho 41.
f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45 => 817 - 279 - 913 chia hết cho 45.
\(B=3^2+3^3+3^6+.....+3^{60}\)
\(\Rightarrow3^2B=3^4+3^6+3^8+.....+3^{62}\)
\(\Rightarrow9B-B=\left(3^4+3^6+.....+3^{62}\right)-\left(3^2+3^4+....+3^{60}\right)\)
\(\Rightarrow8B=3^{62}-3^2\)
\(\Rightarrow B=\frac{3^{62}-3^2}{8}\)
b: \(B=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)⋮8\)
c: \(C=4^{39}\left(1+4+4^2\right)=4^{39}\cdot21=4^{38}\cdot84⋮28\)
Ta có :
(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)
(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)
\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)
<=> A chia hết cho 5 (2)
Mà (5;7)=1 (3)
Từ (1) ; (2) và 3
=> A chia hết cho 5.7 = 35
ta có
\(A=41+41^2+41^3+...+41^{2014}=\)
\(=41\left(1+41\right)+41^3\left(1+41\right)+...+41^{2013}\left(1+41\right)=\)
\(=42\left(41+41^3+41^5+...+41^{2013}\right)⋮7\)
Ta có
\(41A=41^2+41^3+41^4+...+41^{2015}\)
\(40A=41A-A=41^{2015}-41\)
\(A⋮7\Rightarrow40A=41^{2015}-41⋮7\) => 40A+6 chia 7 dư 6
6 chia 7 dư 6
\(\Rightarrow\left(40A+6\right)\equiv6\left(mod7\right)\)
\(\Rightarrow40A+6-6=41^{2015}-41+6-6=41^{2015}-6+35⋮7\)
\(35⋮7\Rightarrow41^{2015}-6⋮7\)