CHỨNG MINH RẰNG:
1/2^2+1/3^2+1/4^2+.....+1/2010^2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}<1\)
\(\Rightarrowđpcm\)
TA CÓ:1/2^2=1/2/2<1/2.3;1/3^2=1/3.3<1/2.3
1/4=1/4.4<1/3.4,...,1/2010^2=1/2010<1/2009.2010
DO ĐÓ:1/2^2+1/3^2+1/4^2+...+1/2010^2<1/1.2+1/2.3+1/3.4+...+1/2009.2010
MÀ 1/1.2+1/2.3+1/3.4+...+1/2009+2010
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010=1-1/2010<1
Vậy 1/2^2+1/3^2+1/4^2+...+1/2010^2<1
a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004
B= 1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005
suy ra 2B=1-1/3^2005
suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)
suy ra B=1/2-1/3^2005/2 bé hơn 1/2
từ đấy suy ra B bé hơn 1/2
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
đặt B=1/1*2+1/2*3+...+1/2011*2012
ta có:A= 1/2^2 + 1/3^2 + 1/4^2 + .... + 1/2010^2 + 1/2011^2 + 1/2012^2<B=1/1*2+1/2*3+...+1/2011*2012 (1)
B=1/1*2+1/2*3+...+1/2011*2012
=1-1/2+1/2-1/3+...+1/2011-1/2012
=1-1/2012<1 (2)
từ (1) và (2) =>A<1
Xét N :
N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)
Ta có :
\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)
\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)
...
\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)
\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)
Cộng vế theo vế của các bất đẳng thức trên , ta có :
\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)
=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
=> N < 1 - \(\frac{1}{2010}\)<1
=> N < 1
1/2^2<1/(1.2)
1/3^2<1/(2.3)
...
1/2010^2<1/(2009.2010)
=>1/2^2+1/3^2+...+1/2010^2<1/(1.2)+1/(2.3)+...+1/(2009.2010)
=>1/2^2+1/3^2+...+1/2010^2<1-1/2+1/2-1/3+...+1/2009-2010
=>1/2^2+1/3^2+...+1/2010^2<1-1/2010
=>=>1/2^2+1/3^2+...+1/2010^2<1(đpcm)