giải phương trình 4x^3-x^2+6x+1=0
giải hẳn ra giúp tôi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^3-5x^2+6x=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
Vậy: S={0;2;3}
\(x^3-5x^2+6x=0\)
\(\Leftrightarrow x^3-2x^2-3x^2+6x=0\)
\(\Leftrightarrow x^2\left(x-2\right)-3x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2-3x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
\(S=\left\{0,2,3\right\}\)
a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)
b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)
d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)
a) Ta có: 4x-20=0
⇔4x=20⇔4x=20
hay x=5
Vậy: S={5}
b) Ta có: 2x+x+12=02x+x+12=0
⇔3x+12=0⇔3x+12=0
⇔3x=−12⇔3x=−12
hay x=-4
D.\(x^2+5x+9< 0\)
\(x^2+5x+9=\left(x^2+2x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right)-\left(\dfrac{5}{2}\right)^2+9=\left(x+\dfrac{5}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Mà \(x^2+5x+9< 0\)
--> pt vô nghiệm
a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)
=>8x+4-18x+3=2x+1
=>-10x+7=2x+1
=>-12x=-6
hay x=1/2
b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)
=>5x-21=6x
=>-x=21
hay x=-21
\(4\sqrt{2}x^2-6x-\sqrt{2}=0\) \(0\)
\(\left(a=4\sqrt{2};b=-6;b'=-3;c=-\sqrt{2}\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(-3\right)^2-4.\left(-\sqrt{2}\right)\)
\(=9+4\sqrt{2}\)
\(\sqrt{\Delta}=\sqrt{9+4\sqrt{2}}\)
Vay : phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{3+\sqrt{9+4\sqrt{2}}}{4\sqrt{2}}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{3-\sqrt{9+4\sqrt{2}}}{4\sqrt{2}}\)