đa giác có 20 đường chéo thì có bao nhiêu cạnh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 1 đỉnh bất kì nối tới 17 đỉnh (trừ ra 2 đỉnh kề với đỉnh đang xét) ta được 17 đường chéo.
Có 20 đỉnh suy ra có 20 . 17 = 340 đường chéo.
Nhưng như thế mỗi đường chéo ta đã kể 2 lần.
Vậy số đường chéo trong 1 đa giác lồi 20 cạnh là \(\dfrac{340}{2}\) = 170 đường chéo.
theo bạn nói thì đa giác lồi có n(n-3) :2 đường chéo
Mà đa giác lồi này có 170 đường chéo
=> n(n-3):2 = 170
=> n(n-3) = 340
=> n(n-3) = 20.17
<=> n = 20
Vậy đa giác lồi này có 20 cạnh
a. Đa giác n đỉnh có \(C_n^2\) đoạn thẳng nối các đỉnh
Trong đó có n cạnh (là đường nối 2 đỉnh liền kế)
\(\Rightarrow\) Có \(C_n^2-n\) đường chéo
b. Cứ 3 đỉnh tạo thành 1 tam giác nên số tam giác là: \(C_n^3\)
c. Tam giác có 2 cạnh là 2 cạnh của tam giác khi 3 đỉnh của tam giác là 3 đỉnh liền kề
\(\Rightarrow\) có n tam giác thỏa mãn
d. Số tam giác chỉ có 1 cạnh là cạnh đa giác: có n cách chọn 2 điểm liền kề, ta có \(n-4\) cách chọn 1 điểm còn lại ko kề với 2 điểm trên
\(\Rightarrow n\left(n-4\right)\) tam giac thỏa mãn
e. Số tam giác thỏa mãn: \(C_n^3-\left(n+n\left(n-4\right)\right)\)
tham khảo
Đa giác đều có 20 cạnh thì sẽ có tất cả 10 đường chéo đi qua tâm của đa giác.
Một hình chữ nhật được tạo thành từ 2 đường chéo đi qua tâm, suy ra số hình chữ nhật được tạo thành là C210C102
Hình vuông được tạo thành từ 2 đường chéo vuông góc nhau, ta có tất cả 5 cặp đường chéo vuông góc nhau, suy ra có tất cả 5 hình vuông.
Vậy có 40 hình chữ nhật (không phải hình vuông) được tạo thành.
Áp dụng công thức tính số đường chéo theo số cạnh của đa giác là: số đường chéo = \(\frac{n\left(n-3\right)}{2}\)trong đó n là số cạnh của đa giác.
Ta có: \(\frac{n\left(n-3\right)}{2}=209\). Bạn tự giải phương trình tìm n là ra.
Trong 1 hình đa giác, 1 điểm có thể nối với (n - 3) điểm còn lại với n là số cạnh của đa giác.
Có n cạnh như vậy thì nối được (n - 3)n đường chéo : 2
=> \(\frac{\left(n-3\right)n}{2}=209\)
=> \(\left(n-3\right)n=418\)
=> \(n\in\left\{22;-19\right\}\)
Loại bỏ nghiệm âm, ta có kết quả : Đa giác có 22 cạnh .
Li-ke cho mình nhé!
theo công thức tính số đường chéo của 1 đa giác lồi có n cạnh = n.(n-3)/2 (n>=3)
---> đa giác lồi có 20 đường chéo thì có số cạnh là :
n.(n-3)/2 = 20
---> n2 - 3n -40 = 0
---->n2 - 8n + 5n - 40 = 0
---->n.(n-8) + 5.(n-8)
---->(n+5) . (n-8) = 0
-----> +)n = -5
+)n = 8
mà n>=3
-----------> n = 8
Vậy đa giác lồi có 20 đường chéo thì có 8 cạnh.