K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

Ta có: \(\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=\frac{n+4}{n+4}-\frac{3}{n+4}=1-\frac{3}{n+4}\)

\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)

Vì \(\frac{3}{n+4}< \frac{3}{n+3}\Rightarrow1-\frac{3}{n+4}>1-\frac{3}{n+3}\Rightarrow\frac{n+1}{n+4}>\frac{n}{n+3}\)

Vậy \(\frac{n+1}{n+4}>\frac{n}{n+3}\)

14 tháng 7 2018

giúp mik với mik cần gấp

8 tháng 7 2017

Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)

           \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)

Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)

Nên \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

18 tháng 9 2017

n/n+3=n:(n+3)=n:n+n:3=1+n:3

n+1/n+2=(n+1):(n+2)=(n+1):n+(n+1):(n+2)=1+n+n/2+1/2=3/2+3n/2=3(1+n):2

Vì ta thấy rõ 3(1+n):2 > 1+n :3 

Hay n/n+3 < n+1/n+2

18 tháng 9 2017

Ta xét 2 phân số sau thì có :

\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)

\(\frac{n+1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+2}{n+2}-\frac{1}{n+2}=1-\frac{1}{n+2}\)

Để so sánh 2 phân số trên ta so sánh\(\frac{3}{n+3};\frac{1}{n+2}\)

Quy đồng lên ta có :

\(\frac{3}{n+3}=\frac{3\left(n+2\right)}{\left(n+3\right)\left(n+2\right)}=\frac{3n+6}{\left(n+3\right)\left(n+2\right)}\)

\(\frac{1}{n+2}=\frac{n+3}{\left(n+2\right)\left(n+3\right)}\)

Mà 3n+6>n+3

\(\Rightarrow\frac{3}{n+3}>\frac{1}{n+2}\)

\(\Rightarrow1-\frac{3}{n+3}< 1-\frac{1}{n+2}\)

\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)

20 tháng 2 2016

a,   <                b, >                 c, không biết

em mới hoc lớp 4 thôi

26 tháng 9 2017

Ta so sánh hai phân số \(A=\frac{n}{n+3}\) và \(B=\frac{n-1}{n+4}\)

Ta thấy \(A+1=\frac{n}{n+3}+1=\frac{n}{n+3}+\frac{n+3}{n+3}=\frac{n+n+3}{n+3}=\frac{2n+3}{n+3}\)\(B+1=\frac{n-1}{n+4}+1=\frac{n-1}{n+4}+\frac{n+4}{n+4}=\frac{n-1+n+4}{n+4}=\frac{2n+3}{n+4}\)

Ta thấy \(2n+3=2n+3;n+3< n+4\Rightarrow\frac{2n+3}{n+3}>\frac{2n+3}{n+4}\Rightarrow A+1>B+1\Rightarrow A>B\)

Vậy \(\frac{n}{n+3}>\frac{n-1}{n+4}.\)

22 tháng 11 2017

cảm ơn Hoàng Thị Thu Huyền

2 tháng 4 2022

phân số n+1/n+2 lớn hơn

\(\dfrac{n}{n+3}-\dfrac{n-1}{n+4}\)

\(=\dfrac{n^2+4n-n^2-2n+3}{\left(n+4\right)\left(n+3\right)}=\dfrac{2n+3}{\left(n+4\right)\left(n+3\right)}>0\)

=>n/n+3>(n-1)/(n+4)