K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

Vì 5 ( x - 1 )2016 ≥ 0

Để B = 3 - 5.( x - 1 )2016 min <=> 5.( x - 1 )2016 = 0 => x = 1

Vậy min B = 3 <=> x = 1

29 tháng 2 2016

5(x-1)^2016 có thể xảy ra trường hợp =0 khi x=1

Vậy GTNN của B là 3-0=3

Ta có : \(\left|x+2\right|+5\ge5\forall x\)

Nên : \(\frac{1}{\left|x+2\right|+5}\le\frac{1}{5}\)

<=> \(\frac{10}{\left|x+2\right|+5}\le\frac{10}{5}=2\)

Vậy Amax = 2 khi x = -2

1 tháng 1 2018

a, ta có: \(\left|2x-6\right|\ge0,\forall x\)

\(\Rightarrow A\le8.\)Dấu "='' xảy ra khi\(\left|2x-6\right|=0\Rightarrow x=3\)

Vậy \(MaxA=8\Leftrightarrow x=3\)

b,Ta có \(B\le0\)Dấu ''='' xảy ra khi \(\left|\frac{5}{3}-x\right|=0\Leftrightarrow x=\frac{5}{3}\)

Vậy..........

c,\(C=-\left(2x+4\right)^{2016}+3\)

Ta có \(-\left(2x+4\right)^{2016}\le0,\forall x\)

\(\Rightarrow C\le3\)Dấu ''='' xảy ra khi \(2x+4=0\Rightarrow x=-2\)

Vậy...........................

15 tháng 3 2017

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

7 tháng 2 2022

1) \(B=-7x^2+9\)

Do \(x^2\ge0\forall x\Rightarrow-7x^2\le0\forall x\)

\(\Rightarrow B=-7x^2+9\le9\)

\(maxB=9\Leftrightarrow x=0\)

2) \(C=2-\left(3x-4\right)^4\)

Do \(\left(3x-4\right)^4\ge0\forall x\Rightarrow-\left(3x-4\right)^4\le0\forall x\)

\(\Rightarrow C=2-\left(3x-4\right)^4\le2\)

\(maxC=2\Leftrightarrow x=\dfrac{4}{3}\)

3) \(D=\dfrac{1}{2}x^2+3\)

Do \(\dfrac{1}{2}x^2\ge0\forall x\Rightarrow D=\dfrac{1}{2}x^2+3\ge3\)

\(minD=3\Leftrightarrow x=0\)

4) \(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{-x^2+5}\)

Do \(x^2\ge0\forall x\Rightarrow-x^2+5\le5\forall x\)

\(\Rightarrow E=\dfrac{2016}{-x^2+5}\ge\dfrac{2016}{5}\)

\(minE=\dfrac{2016}{5}\Leftrightarrow x=0\)

7 tháng 2 2022

\(B=-7x^2+9\)

Vì \(-7x^2\le0\forall x\)

\(\Rightarrow-7x^2+9\le9\forall x\)

\(\Rightarrow B_{max}=9\Leftrightarrow-7x^2=0\Leftrightarrow x=0\)

\(C=2-\left(3x-4\right)^4\)

Vì \(-\left(3x-4\right)^4\le0\forall x\)

\(\Rightarrow-\left(3x-4\right)^4+2\le2\forall x\)

\(\Rightarrow C_{max}=2\Leftrightarrow-\left(3x-4\right)^4=0\Leftrightarrow x=\dfrac{4}{3}\)

Nếu tìm GTLN thì câu \(d\) là \(D=-\dfrac{1}{2}x^2+3\)

Vì \(-\dfrac{1}{2}x^2\le0\forall x\)

\(\Rightarrow-\dfrac{1}{2}x^2+3\le3\forall x\)

\(\Rightarrow D_{max}=3\Leftrightarrow-\dfrac{1}{2}x^2=0\Leftrightarrow x=0\)

\(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{5-x^2}\)

Vì \(x^2\ge0\forall x\)

\(\Rightarrow5-x^2\le5\forall x\)

\(\Rightarrow E_{min}=5\Leftrightarrow x=\dfrac{2016}{5}\)

 

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

26 tháng 8 2016

a/ A = x2 + (y - 1)4 - 3

Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0

=> A = x2 + (y - 1)4 - 3 \(\ge\)-3

Đẳng thức xảy ra khi: x = 0 và y - 1 = 0  => x = 0 và y = 1

Vậy GTNN của A là -3 khi x = 0 và y = 1

b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995 

Mà: 3x2\(\ge\)0  => B = 3x2 + 1995 \(\ge\)1995

Đẳng thức xảy ra khi: 3x2 = 0  => x = 0

Vậy GTNN của B là 1995 khi x = 0

c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15 

Mà: x2\(\ge\)0  => x2 - 15\(\ge\)-15

Đẳng thức xảy ra khi: x2 = 0  => x = 0

Vậy GTNN cảu C là -15 khi x = 0

23 tháng 10 2016

\(\left(x-1\right)^{2016}\ge0\)

\(\left|y+3\right|\ge0\)

\(\left(x-1\right)^{2016}+\left|y+3\right|+2017\ge2017\)

\(MinB=2017\Leftrightarrow x=1;y=-3\)