Cho A=1+3+32+...+32008. Tinh 2A-32009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số của dãy trên là:
(32009 - 30):1+1 =31980 (số)
Số cặp số của dãy là:
31980 : 2 = 15990 (cặp)
\(30+31+32+....+32008+32009\)
\(=\left(30+32009\right)+\left(31+32008\right)+...\)
\(=32039\times15990=512303610\)
Vậy \(512303610\div8=64037951\left(dư2\right)\)
Theo đề bài ra, ta có :
`A=1+32+34+36+....+32008`
\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`
`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`
\(\Rightarrow\) `8A=(-1)+32010`
\(\Rightarrow\) `8A-32010=(-1)`
@Nae
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
Ta có: \(M=3^{2012}-3^{2011}+3^{2010}-3^{2009}\)
\(=\left(3^{2012}+3^{2010}\right)-\left(3^{2011}+3^{2009}\right)\)
\(=3^{2010}\cdot\left(3^2+1\right)-3^{2009}\left(3^2+1\right)\)
\(=\left(3^2+1\right)\cdot\left(3^{2010}-3^{2009}\right)\)
\(=10\cdot3^{2009}\cdot\left(3-1\right)⋮10\)(đpcm)
A = 1 + 6 + 62 + ... + 632
= 1 + (6 + 62 + 63 + 64) + (65 + 66 + 67 + 68) + ... + (629 + 630 + 631 + 632)
= 1 + (62 + 1).(62 + 6) + 64(62 + 1)(62 + 6) + .... + 628(62 + 1)(62 + 6)
= 1 + (62 + 1).(62 + 6).(1 + 64 + ... + 628)
= 1 + 37. (62 + 6).(1 + 64 + ... + 628)
=> A : 37 dư 1
Khi đó 2A + 3 = 2.[1 + 37. (62 + 6).(1 + 64 + ... + 628)] + 3
= 2 + 2.37. (62 + 6).(1 + 64 + ... + 628) + 3
= 5 + 2.37. (62 + 6).(1 + 64 + ... + 628)
=> P = 2A + 3 : 37 dư 5
a, A = 1 + 3 + 32 + 33 +....+32022
3A = 3 + 32 + 33 +.....+32022 + 32023
3A - A = 32023 - 1
2A = 32023 - 1
2A - 22023 = 32023 - 1 - 22023
2A - 22023 = -1
b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)
x + 10 \(⋮\) x - 1
\(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1
11 \(⋮\) x - 1
x-1 \(\in\) { -11; -1; 1; 11}
x \(\in\) { -10; 0; 2; 12}
Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :
x \(\in\) { -10; 0; 2; 12}
Ta có:
\(A=1+3+3^2+..+3^{2008}\)
\(\Rightarrow3A=\left(1+3+3^2+...+3^{2008}\right).3\)
\(=3+3^2+3^3...+3^{2009}\)
Vì \(2A=3A-A\)nên ta có:
\(2A=\left(3+3^2+3^3+...+3^{2009}\right)-\left(1+3+3^2+..+3^{2008}\right)\)
\(=3^{2009}-1\)
\(\Rightarrow2A-3^{2009}=3^{2009}-1-3^{2009}\)
\(=\left(3^{2009}-3^{2009}\right)-1\)
\(=0-1\)
\(=-1\)
Vậy \(2A-3^{2009}=-1\)