K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

(24-x).(x-5)=0

<=>\(\hept{\begin{cases}24-x=0\\x-5=0\end{cases}}\)<=>\(\hept{\begin{cases}x=24\\x=5\end{cases}}\)

Vậy x=24 hoặc x=5

HT

12 tháng 12 2021

TL

=> 24 - x = 0 <=> x = 24

hoặc x - 5 = 0 <=> x = 5

Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!

3 tháng 3 2022

`(x + 2)(x + 3)(x + 4)(x + 5) - 24 = 0`

`[(x + 2)(x + 5)] [(x + 3)(x + 4)] - 24 = 0`

`(x^2 + 7x + 10)(x^2 + 7x + 12) - 24 = 0`

`(x^2 + 7x + 11 - 1)(x^2 + 7x + 11 + 1) - 24 = 0`

`(x^2 + 7x + 11) - 1 - 24 = 0`

`(x^2 + 7x + 11) - 25 = 0`

`(x^2 + 7x + 11 - 5)(x^2 + 7x + 11 + 5) = 0`

`(x^2 + 7x + 6)(x^2 + 7x + 16) = 0`

`=> x^2 + 7x + 6 = 0` hoặc `x^2 + 7x + 16 = 0`

Ta có: `x^2 + 7x + 16 = x^2 + 7x + 49/4 + 15/4 = (x + 7/2)^2 + 15/4`

Vì  \(\left(x+\dfrac{7}{2}\right)^2\ge0\forall x\) nên \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{15}{4}>0\)

`=> x^2 + 7x + 6 = 0`

`<=> x^2 + x + 6x + 6 = 0`

`<=> x(x + 1) + 6(x + 1) = 0`

`<=> (x + 1)(x + 6) = 0`

`<=> x + 1 = 0` hoặc `x + 6 = 0`

`<=> x = -1` hoặc `x = -6`

\(\Leftrightarrow\left(x^2+7x+12\right)\left(x^2+7x+10\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96=0\)

\(\Leftrightarrow\left(x^2+7x+6\right)\left(x^2+7x+16\right)=0\)

=>(x+1)(x+6)=0

=>x=-1 hoặc x=-6

2 tháng 7 2018

Gửi emHỏi đáp Toán

2 tháng 7 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\\ \Leftrightarrow\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]=24\\ \Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)=24\)

đặt \(t=x^2+7x+11\) khi đó ta có

\(\left(t-1\right)\left(t+1\right)=24\\ \Leftrightarrow t^2-1-24=0\\ \Leftrightarrow\left(t-5\right)\left(t+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)

Trở về ẩn x ta có

Với t=5

\(x^2+7x+11=5\Leftrightarrow x^2+7x+6\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

Với t=-5

\(x^2+7x+11=-5\\\Leftrightarrow x^2+7x+16=0\\ \Leftrightarrow\left(x+3,5\right)^2+3,75=0\)

Voi \(\left(x+3,5\right)^2\ge0\Rightarrow\varnothing\)

Vậy ...................

24 tháng 7 2016

\(2-\left[\left(5\frac{5}{24}+x\right)-7\frac{5}{24}\right]=0\)

\(\left[\left(\frac{125}{24}+x\right)-\frac{173}{24}\right]=2-0=2\)

\(\frac{125}{24}+x-\frac{173}{24}=2\)

\(\frac{125}{24}-\frac{173}{24}+x=2\)

\(\frac{-48}{24}+x=2\)

\(x=2-\left(-2\right)\)

\(x=4\)

24 tháng 7 2016

cbfgdh

30 tháng 7 2018

1) -3x2+5x=0

-x(3x-5)=0

suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5

2) x2+3x-2x-6=0

x(x+3)-2(x+3)=0

(x-2)(x+3)=0

suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3

3) x2+6x-x-6=0

x(x+6)-(x+6)=0

(x-1)(x+6)=0. vậy nghiệm là 1 và -6

4) x2+2x-3x-6=0

x(x+2)-3(x+2)=0

(x-3)(x+2)=0

vậy nghiệm là -2 và 3

5) x(x-6)-4(x-6)=0

(x-4)(x-6)=0. vậy nghiệm là 4 và 6

6)x(x-8)-3(x-8)=0

(x-3)(x-8)=0

suy ra nghiệm là 3 và 8

7) x2-5x-24=0

x2-8x+3x-24=0

x(x-8)+3(x-8)=0

(x+3)(x-8)=0

vậy nghiệm là -3 và 8

22 tháng 3 2020

câu 1:  -3x2 + 5x = 0

suy ra -x(3x-5)=0

sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3

18 tháng 10 2015

\(x\inƯ\left(24\right)=\left\{1;2;3;4;6;8;12;24\right\}\)

\(x\in B\left(15\right)=\left\{15;30;45\right\}\)

\(x\in\left\{6;9;12;18;36\right\}\)

\(x=\phi\)

3 tháng 8 2023

\(x^3-2x^2+x-2=0\\ \Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ Vậy:x=2\\ ---\\ 2x\left(3x-5\right)=10-6x\\ \Leftrightarrow6x^2-10x-10+6x=0\\ \Leftrightarrow6x^2-4x-10=0\\ \Leftrightarrow6x^2+6x-10x-10=0\\ \Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}6x-10=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

3 tháng 8 2023

\(4-x=2\left(x-4\right)^2\\ \Leftrightarrow4-x=2\left(x^2-8x+16\right)\\ \Leftrightarrow2x^2-16x+32+x-4=0\\ \Leftrightarrow2x^2-15x+28=0\\ \Leftrightarrow2x^2-8x-7x+28=0\\ \Leftrightarrow2x\left(x-4\right)-7\left(x-4\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\\ ---\\ 4-6x+x\left(3x-2\right)=0\\ \Leftrightarrow4-6x+3x^2-2x=0\\ \Leftrightarrow3x^2-8x+4=0\\ \Leftrightarrow3x^2-6x-2x+4=0\\ \Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

8 tháng 7 2023

a) \(5\left(x-7\right)=0\)

\(\Rightarrow x-7=0\)

\(\Rightarrow x=7\)

b) \(25\left(x-4\right)=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=4\)

c) \(\left(34-2x\right)\left(2x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)

d) \(\left(2019-x\right)\left(3x-12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{12}{3}=4\end{matrix}\right.\)

e) \(57\left(9x-27\right)=0\)

\(\Rightarrow9x-27=0\)

\(\Rightarrow9\left(x-3\right)=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

8 tháng 7 2023

a) 5.(x-7)=0⇔x-7=0⇔x=7

b) 25(x-4)=0⇔x-4=0⇔x=4

c) (34-2x).(2x-6)=0

⇔ 34-2x=0 hoặc 2x-6=0

⇔2x=34 hoặc 2x=6

⇔ x=17 hoặc x=3

d) (2019-x).(3x-12)=0

⇔ 2019-x=0 hoặc 3x-12=0

⇔ x=2019 hoặc x=4

e) 57.(9x-27)=0

⇔ 9x-27=0

⇔ x=3

f) 25+(15-x)=30

⇔ 15-x=5

⇔ x=10

g) 43-(24-x)=20

⇔ 24-x=23

⇔ x=1

h) 2.(x-5)-17=25

⇔ 2(x-5)=42

⇔x-5=21

⇔ x=26

i) 3(x+7)-15=27

⇔ 3(x+7)=42

⇔ x+7=14

⇔ x=7

j) 15+4(x-2)=95

⇔ 4(x-2)=80

⇔ x-2=20

⇔ x=22

k) 20-(x+14)=5

⇔ x+14=15

⇔ x=1

l) 14+3(5-x)=27

⇔ 3(5-x)=13

⇔ 5-x=13/3

⇔ x=5-13/3

⇔ x=2/3

7 tháng 7 2021

a) x(x + 4) - 5(x - 4) = 0

<=> x2 + 4x - 5x + 20 = 0

<=> x2 - x + 20 = 0

<=> (x - 1/2)2 + 79/4 = 0

Do (x - 1/2)2 \(\ge\)0 => (x - 1/2)2 + 79/4 > 0

=> Không tồn tại x tm

b) x2 - 5x - 24 = 0

<=> x2 - 8x + 3x - 24 = 0

<=> x(x - 8) + 3(x - 8) = 0

<=> (x + 3)(x - 8) = 0

<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

Vậy x = -3 hoặc x = 8

7 tháng 7 2021

a) x(x + 4) -  5(x - 4) = 0

<=> x2 + 4x - 5x + 20 = 0

<=> x2 - x + 20 = 0

Vì x2 - x + 20 = \(\left(x-\frac{1}{2}\right)^2+\frac{81}{4}>0\forall x\)

=> Phương trình vô nghiêm

b) x2 - 5x - 24 = 0

<=> x2 + 3x - 8x - 24 = 0

<=> x(x + 3) - 8(x + 3) = 0

<=> (x + 3)(x - 8) = 0

<=> \(\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

Vậy tập nghiệm phương trình là \(S=\left\{-3;8\right\}\)