GPT sau: \(\sqrt[3]{x+4}=\sqrt{x-1}+2x-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(x+\sqrt[3]{x-\dfrac{1}{x}}=2+\dfrac{1}{x}\)
\(\Leftrightarrow x-\dfrac{1}{x}+\sqrt[3]{x-\dfrac{1}{x}}-2=0\)
Đặt \(\sqrt[3]{x-\dfrac{1}{x}}=t\)
\(\Rightarrow t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\)
\(\Leftrightarrow t=1\Rightarrow x-\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)
ĐK : tự làm :
Đặt \(\sqrt{2x+3x-\sqrt{x+2}}=a;\sqrt{2x+4+\sqrt{x+2}}=b\)
TA có : \(b^2-a^2=1+2\sqrt{x+2}=a+b\)
=> b - a = 1 => b = 1 + a
=> \(\sqrt{2x+4+\sqrt{x+2}}=1+\sqrt{2x+3-\sqrt{x+2}}\)
=> \(2x+4+\sqrt{x+2}=1+2x+3-\sqrt{x+2}+2\sqrt{2x+3-\sqrt{x+2}}\)
=> \(2\sqrt{x+2}=2\sqrt{2x+3-\sqrt{x+2}}\)
=> \(x+2=2x+3-\sqrt{x+2}\)
=> \(\sqrt{x+2}=x+1\)
tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,
Akai Haruma, @Nguyễn Việt Lâm
giúp mk vs! ngày mai phải nộp r
x=0 ko là nghiệm
chia cả hai vê cho x<>0, ta được:
\(x-\dfrac{1}{x}+\sqrt[3]{x-\dfrac{1}{x}}=2\)
Đặt \(\sqrt[3]{x-\dfrac{1}{x}}=a\)
=>a^3+a=2
=>a=1
=>x-1/x=1
=>\(x=\dfrac{1\pm\sqrt{5}}{2}\)