tìm A = x/(1+x^4) max
giúp nhanh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left|x\left(x-4\right)\right|=x\)
\(\Rightarrow x\left(x-4\right)=\pm x\)
+) \(x\left(x-4\right)=x\)
\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
+) \(x\left(x-4\right)=-x\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
Vậy x = 5 hoặc x = 3
\(dkxd\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}}\)
\(A=\left(\frac{\sqrt{x}}{x-4}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}.\)
\(=\left(\frac{\sqrt{x}}{x-4}-\frac{2\left(\sqrt{x}+2\right)}{x-4}+\frac{\sqrt{x}-2}{x-4}\right):\frac{1}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+2}{1}\)
\(=\frac{-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-\frac{6}{\sqrt{x}-2}\)
\(A=\)\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)\(:\frac{1}{\sqrt{x}+2}\)
a,ĐKXĐ:\(\hept{\begin{cases}x\ge0\\2-\sqrt{x}\\x-4\ne0\end{cases}\ne0}\)\(\Rightarrow\)\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\)\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)\(:\frac{1}{\sqrt{x}+2}\)
\(A=\)\(\left(\frac{\sqrt{x}}{x-4}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right)\)\(.\left(\sqrt{x}+2\right)\)
\(A=\)\(\left(\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)
\(A=\)\(\left(\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)
\(A=\)\(\left(\frac{-6}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)
\(A=\)\(\frac{-6}{\sqrt{x}-2}\)
b,\(x=9-4\sqrt{5}\)\(\Rightarrow\)\(A=\)\(\frac{-6}{\sqrt{9-4\sqrt{5}}-2}\)\(=\frac{-6}{\sqrt{5-2.2\sqrt{5}+4}-2}\)
\(A=\)\(\frac{-6}{\sqrt{\left(\sqrt{5}-2\right)^2}-2}\)\(=\frac{-6}{\sqrt{5}-2-2}\)\(=\frac{-6}{\sqrt{5}-4}\)
c,\(A>-1\)\(\Rightarrow\)\(\frac{-6}{\sqrt{x}-2}\)\(>-1\)\(\Rightarrow\)\(\frac{-6}{\sqrt{x}-2}+1>0\)
\(\Leftrightarrow\)\(\frac{-6+\sqrt{x}-2}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-8}{\sqrt{x}-2}>0\)
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)
\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|4-x\right|+\left|5-x\right|\)
\(\Rightarrow A\ge x-1+x-2+0+4-x+5-x\)
\(\Rightarrow A\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1\ge0;x-2\ge0\\x-3=0\\x-4\le0;x-5\le0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\Rightarrow x\in\left(2;3;4\right)\)
Vậy MinA = 6 \(\Leftrightarrow x\in\left(2,3,4\right)\)