giúp mình tìm các cặp tam giác đồng dạng trong 2 hình này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét cặp tam giác thứ nhất: Hình a và Hình c.
Ta có: \(\frac{3}{9} = \frac{1}{3};\frac{7}{{21}} = \frac{1}{3};\frac{{8\frac{1}{3}}}{{25}} = \frac{1}{3}\).
Do đó, tam giác ở Hình a và Hình c đồng dạng với nhau.
Xét cặp tam giác thứ hai: Hình b và Hình d.
Ta có: \(\frac{7}{{14}} = \frac{1}{2};\frac{7}{{14}} = \frac{1}{2};\frac{3}{6} = \frac{1}{2}\).
Do đó, tam giác ở Hình b và Hình d đồng dạng với nhau.
Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.
Ta có:
AC/BC = 3/4,5 = 2/3
DE/EF = 2/3
⇒ AC/BC = DE/EF
∆ABC và ∆DFE có:
AC/BC = DE/EF = 2/3
∠BAC = ∠EDF = 90⁰
⇒ ∆ABC ∽ ∆DFE (cạnh huyền - cạnh góc vuông)
Tam giác ABC và tam giác DEF có:
\( \widehat A = \widehat D = 90^0 \)
\( \frac {AC}{DE} = \frac {BC}{EF} = \frac {3}{2} \)
\( \Rightarrow \Delta ABC \backsim \Delta DFE (ch - cgv) \)
Xét ΔPED và ΔPMN có
\(\dfrac{PE}{PM}=\dfrac{PD}{PN}=\dfrac{1}{2}\)
\(\widehat{P}\) chung
Do đó: ΔPED~ΔPMN
=>\(k=\dfrac{PE}{PM}=\dfrac{1}{2}\)
a) ΔABC ΔHBA vì Â = Ĥ = 90º, B̂ chung
ΔABC ΔHAC vì Â = Ĥ = 90º, Ĉ chung
ΔHBA ΔHAC vì cùng đồng dạng với ΔABC.
b) + ΔABC vuông tại A
⇒ BC2 = AB2 + AC2
(Theo định lý Pytago)
Câu 6:
\(\left\{{}\begin{matrix}\widehat{ACB}\text{ chung}\\\widehat{CKB}=\widehat{CHA}=90^0\end{matrix}\right.\Rightarrow\Delta CHA\sim\Delta CKB\left(g.g\right)\\ \left\{{}\begin{matrix}\widehat{ACB}\text{ chung}\\\widehat{AHC}=\widehat{DBC}=90^0\end{matrix}\right.\Rightarrow\Delta CHA\sim\Delta CBD\left(g.g\right)\\ \left\{{}\begin{matrix}\widehat{ACB}\text{ chung}\\\widehat{CKB}=\widehat{DBA}=90^0\end{matrix}\right.\Rightarrow\Delta CKB\sim\Delta CBD\left(g.g\right)\\ \Delta CHA\sim\Delta CKB\Rightarrow\dfrac{CH}{CK}=\dfrac{CA}{CB}\Rightarrow\Delta CKH\sim\Delta CBA\left(c.g.c\right)\)
6 ADB và ACB
7 AE và BC , AB và EC