Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
a)nếu p=2 thì :
p+10=2+10=12 là hợp số(loại)
nếu p=3 thì:
p+10=3+10=13 là số nguyên tố
p+14=3+14=17 là số nguyên tố
(thỏa mãn)
nếu p>3 thì:
p sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:p=3k+1
nếu p=3k+1 thì:
p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:p=3k+2
nếu p=3k+2 thì:
p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu p>3 thì không có giá trị nào thỏa mãn
vậy p=3
b)nếu q=2 thì :
q+10=2+10=12 là hợp số(loại)
nếu q=3 thì:
q+2=3+2=5 là số nguyên tố
q+10=3+10=13 là số nguyên tố
(thỏa mãn)
nếu q>3 thì:
q sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:q=3k+1
nếu q=3k+1 thì:
q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:q=3k+2
nếu q=3k+2 thì:
q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu q>3 thì không có giá trị nào thỏa mãn
vậy q=3
a)- nếu p= 2 => p là HS (loại)
- nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m
p+4= 3+4= 7 (SNT) => t/m
- Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1
P:3 dư 2 => P= 3k +2
+ P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3 ( t/m)
+ P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3 (t/m )
Vậy P=3
Tìm số nguyên tố p sao cho
A. p, p+2, p+4 là các số nguyên tố
B. p+10,p+14 là các số nguyên tố
C. p+2,p+6,p+8,p+14 là các số nguyên tố
a)- nếu p= 2 => p là HS (loại)
- nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m
p+4= 3+4= 7 (SNT) => t/m
- Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1
P:3 dư 2 => P= 3k +2
+ P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3 ( t/m)
+ P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3 (t/m )
Vậy P=3
p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Trường hợp 1: p=3
\(\Leftrightarrow\left\{{}\begin{matrix}p+10=13\left(nhận\right)\\p+14=17\left(nhận\right)\end{matrix}\right.\)
Trường hợp 2: p=3k+1
\(\Leftrightarrow p+14=3k+15=3\left(k+5\right)\)
=> Loại
Trường hợp 3: p=3k+2
\(\Leftrightarrow p+10=3k+12=3\left(k+4\right)\)
=> Loại
Với p>3 thì p có dạng 3k+1 hoặc 3k+2
*p=3k+1=>p+14=3k+15=3.(k+5) chia hết cho 3
*p=3k+2=>p+10=3k+12=3.(k+4) chia hết cho 2
Vậy p không thể >3
=>p=2 hoặc p=3
*p=2 =>p+10=12 không phải là số nguyên tố.
*p=3=>p+10=13 là số nguyên tố ; p+14=17 là số nguyên tố
Vậy p=3