Tìm GTNN của biểu thức A= 92/m/92/m/+9/m/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(A=\sqrt{92-x}+\sqrt{29}>=\sqrt{29}\)
Dấu '=' xảy ra khi x=92
b: \(=7\left(x+5\right)^2-10>=-10\)
Dấu '=' xảy ra khi x=-5

a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1


\(x^2-\left(m+2\right)x+m=0\left(1\right)\)
Để phương trình (1) có nghiệm thì:
\(\Delta\ge0\Rightarrow\left(m+2\right)^2-4m\ge0\)
\(\Leftrightarrow m^2+4\ge0\) (luôn đúng)
Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)
\(A=x_1^3-\left(m+1\right)x_1^2+mx_1-5m\)
\(=x_1^3-\left(x_1+x_2-1\right)x_1^2+x_1\left(m-5\right)\)
\(=x_1^3-x_1^3-x_1^2x_2+x_1^2+x_1\left(x_1x_2-5\right)\)
\(=-x_1^2x_2+x_1^2+x_1^2x_2-5x_1\)
\(=x_1^2-5x_1=\left(x_1^2-5x_1+\dfrac{25}{4}\right)-\dfrac{25}{4}=\left(x_1-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)
Vậy \(MinA=-\dfrac{25}{4}\).

a)x2-2x+m= (x-1)2+m-1 \(\ge m-1\) Min =2 => m-1 = 2 <=> m = 3
b) = 4x2-2x+6x+m= 4x2+4x+m = (2x+1)2+m-1 \(\ge m-1\) Min=1998 <=> m-1 = 1998 <=> m = 1999
