chứng minh 12n+1/30n+2 là tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung lớn nhất của 12n+1 và 30n+2
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\left\{-1;1\right\}\)
Vậy \(\frac{12n+1}{3n+2}\)là phân số tối giản
Gọi d là (30n+2 ; 12n+1) (1) => 30n+2 chia hết cho d => 2(30n+2) chia hết cho d hay 60n+4 chia hết cho d
Tương tự ta chứng minh được 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
do đó (60n+5) - (60n+4) chia hết cho d hay 1 chia hết cho d => d=1 hoặc -1 (2)
Từ (1) và (2) => (30n+2 ; 12n+1) = 1 hoặc -1 do đó phân số 12n+1 trên 30n+2 là phân số tối giản (Đ.P.C.M)
Gọi d là ƯCLN ( 12n+1; 30n+2 )
=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )
=> 30n + 2 ⋮ d => 2.( 30n + 2 ) ⋮ d => 60n + 4 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 60n + 5 ) - ( 60n + 4 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( 12n + 1 ; 30n + 2 ) = 1 nên 12n+1/30n+2 là p/s tối giản
Gọi d là ước chung của 12n+1 và 30n+2 ta có:
5.(12n+1)-2.(30n+2)=60n+5-60n-4=1 chia hết cho d
Vậy d=1 nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau, do đó \(\frac{12n+1}{30n+2}\) là phân số tối giản
Gọi d là (30n+2 ; 12n+1) (1) => 30n+2 chia hết cho d => 2(30n+2) chia hết cho d hay 60n+4 chia hết cho d
Tương tự ta chứng minh được 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
do đó (60n+5) - (60n+4) chia hết cho d hay 1 chia hết cho d => d=1 hoặc -1 (2)
Từ (1) và (2) => (30n+2 ; 12n+1) = 1 hoặc -1 do đó phân số 12n+1 trên 30n+2 là phân số tối giản (Đ.P.C.M)
Gọi d thuộc ƯC (12n+1, 30n+2). Ta có:
12n+1 chia hết cho d, 30n+2 chia hết cho d
=> 12n+1 - 30n+2 chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=> 60n+5 - 60n+4 chia hết cho d
=> (60n - 60n) + (5-4) chia hết cho d
=> 1 chia hết cho d
=> d = 1 hoặc d = -1
Vậy phân số trên là phân số tối giản.
Gọi d thuộc ƯC (12n+1, 30n+2).
Ta có:
12n+1 chia hết cho d, 30n+2 chia hết cho d
=> 12n+1 - 30n+2 chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=> 60n+5 - 60n+4 chia hết cho d
=> (60n - 60n) + (5-4) chia hết cho d
=> 1 chia hết cho d
=> d = 1 hoặc d = -1
Vậy phân số trên là phân số tối giản.
Gọi ƯCLN( 12n+1 , 30n+2 ) = d ( d E Z ) => \(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\) => ( 60n + 5 ) - ( 60n + 4 ) \(⋮\) d => 1 \(⋮\) d => d E { 1 ; -1 } Vậy PS \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
Gọi (12n + 1; 30n + 2) = d
=> 12n + 1 chia hết cho d
30n + 2 chia hết cho d
Xét hiệu: 5(12n + 1) - 2(30n + 2) chia hết cho d
<=> 60n + 5 - 60n - 4 chia hết cho d
<=> 1 chia hết cho d
=> d = 1
Vậy (12n + 1)/(30n + 2) là phân số tối giản
Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d, ta sẽ chứng minh d = 1.
Ta có : (12n + 1)⋮ d nên 2.(30n + 2)⋮ d hay (60n + 4)⋮ d.
=> [(60n + 5) - (60n + 4)⋮ d.
=> (60n + 5 - 60n - 4)⋮ d.
=> 1⋮ d => d = 1.
Hay 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau.
Vậy : phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản.
Ta có 12n+1=60n+5(1)
30n+2=60n+4(2)
Lấy (1)-(2)=60n+5-60n-4=1
⇒⇒ƯCLN(12n+1,30n+2)=1
Vậy Chứng tỏ rằng 12n+1/30n+2 là phân số tối giản
Gọi \(\text{ƯCLN(12n + 1 ; 30n + 2) = d }\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}24n+2⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow6n⋮d\)
\(\Rightarrow12n⋮d\)
Mà \(12n+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(Do\text{ }d\inℕ^∗\right)\)
=> 12n + 1 và 30n + 2 nguyên tố cùng nhau
=> Phân số \(\frac{12n+1}{30n+2}\)tối giản
Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d 60n+5 chia hết cho d
=>
30n +2chia hết cho d 60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)