Bài 4: Tìm các số nguyên x, sao cho:
a) 11 chia hết cho x; b) x chia hết cho 18; c) 2x – 3 là bội của x + 1; d) x – 2 là ước của 3x – 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI 1:
\(3x+23\)\(⋮\)\(x+4\)
\(\Leftrightarrow\)\(3\left(x+4\right)+11\)\(⋮\)\(x+4\)
Ta thấy \(3\left(x+4\right)\)\(⋮\)\(x+4\)
nên \(11\)\(⋮\)\(x+4\)
hay \(x+4\)\(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x+4\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-15\) \(-5\) \(-3\) \(7\)
Vậy \(x=\left\{-15;-5;-3;7\right\}\)
BÀI 2
\(\left(x+5\right)\left(y-3\right)=11\)
\(\Rightarrow\)\(x+5\) và \(y-3\) \(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau:
\(x+5\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-16\) \(-6\) \(-4\) \(6\)
\(y-3\) \(-1\) \(-11\) \(11\) \(1\)
\(y\) \(2\) \(-8\) \(14\) \(4\)
Vậy.....
bài 1:
3x + 23 chia hết cho x + 4
ta có: 3x + 23 chia hết cho x + 4
mà x + 4 chia hết cho x + 4
=> 3(x + 4) chia hết cho x + 4
=> (3x + 23) - 3(x + 4) chia hết cho x + 4
3x + 23 - 3x - 12 chia hết cho x + 4
=> 11 chia hết cho x + 4
=> x + 4 thuộc Ư(11)
mà Ư(11)= {-11;-1;1;11}
=> x + 4 thuộc {-11;-1;1;11}
=> x thuộc {-15;-5;-3;7}
Vậy x thuộc {-15;-5;-3;7} thì 3x + 23 chia hết cho x + 4
bài 2:
(x + 5).(y-3) = 11
ta có bảng:
x + 5 -11 -1 1 11
y - 3 -1 -11 11 1
x -16 -6 -4 6
y 2 -8 14 4
vậy (x,y) thuộc {(-16;2);(-6;-8);(-4;14);(6;40} thì (x + 5).(y - 3) = 11
Chúc bạn học giỏi ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
![](https://rs.olm.vn/images/avt/0.png?1311)
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
=>7x+11 chia hết cho 2x+4
=>14x+22 chia hết cho 2x+4
=>14x+28-6 chia hết cho 2x+4
=>\(2x+4\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(x\in\left\{-1;-3;1;-5\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)