6n+1 chia hết cho n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 6n + 5 chia hết cho 2n - 1
<=> 6n - 3 + 8 chia hết cho 2n - 1
<=> 3(2n - 1) + 8 chia hết cho 2n - 1
<=> 8 chia hết cho 2n - 1
<=> 2n - 1 thuôc Ư(8) = ......
=> 2n = .......
=> n = ......
Ta có : 6n + 3 chia hết cho 4n + 1
<=> 2(6n + 3) chia hết cho 4n + 1
<=> 12n + 6 chia hết cho 4n + 1
<=> 12n + 3 + 3 chia hết cho 4n + 1
<=> 3(4n + 1) + 3 chia hết cho 4n + 1
<=> 3 chia hết cho 4n + 1
<=> 4n + 1 thuộc Ư(3)
tự giải tiếp
b.2n-4 chia hết cho n+2<=>2n+4-8 chia hết cho n+2
<=>2(n+2)-8 chia het cho n+2
<=>8 chia hết cho n+2
<=> n+2 thuộc ước của 8
còn lại tự tính nha
những câu hỏi khác cũng tương tự
tick nha
a) Ta có: x + 10 = (n - 1) + 11
Do n - 1 \(⋮\) n - 1 => 11 \(⋮\)n - 1 => n - 1 \(\in\)Ư(11) = {1; -1; 11; -11}
Lập bảng :
n - 1 | 1 | -1 | 11 | -11 |
n | 2 | 0 | 12 | -10 |
Vậy ...
b) Ta có: 3n + 1 = 3(n - 2) + 7
Do 3(n - 2) \(⋮\)n - 2 => 7 \(⋮\)n - 2 => n - 2 \(\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng :
n - 2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
Vậy ...
c) HD : Ta có: 4n + 2 = 4(n + 1) - 2
Do 4(n + 1) \(⋮\)n + 1 => 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng : (TT như trên)
d) Ta có: 6n - 9 = 3(2n + 1) - 12
Còn lại TT như trên
a) n + 5 \(⋮\) n - 1 <=> (n - 1) + 6 \(⋮\) n - 1
=> 6 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)
=> n - 1 \(\in\) Ư(6) = \(\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Đến đây tự làm tiếp nhé!
Để n+5 chia hết cho n-1 thì n-1 phải thuộc Ư(n+5)
Để 2m+4 chia hết cho n+2 thì n+2 phải thuộc Ư(2n+4)
Để 6n+4 chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(6n+4)
Để 3-2n chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(3-2n)
a/ \(n+5⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow6⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n-1=1\\n-1=2\\n-1=3\\n-1=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\\n=3\\n=4\\n=7\end{matrix}\right.\)
Vậy ...
b/ \(2n-4⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n-4⋮n+2\\2n+4⋮n+2\end{matrix}\right.\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(8\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+2=1\\n+2=2\\n+2=4\\n+2=8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=-1\\n=0\\n=2\\n=6\end{matrix}\right.\)
Vậy ...
Làm tiếp 2 phần sau.
c) \(6n+4⋮2n+1\)
\(\Leftrightarrow3\left(2n+1\right)+1⋮n+1\)
Vì \(3\left(2n+1\right)⋮2n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) |
\(n\) | \(-2\) | \(0\) |
Vậy...
d) \(3-2n⋮n+1\)
\(\Leftrightarrow3-2\left(n+1\right)-2⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên \(\left(3+2\right)⋮n+1\Rightarrow n+1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(n\) | \(-2\) | \(0\) | \(-6\) | \(4\) |
Vậy...
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
-3,-9,-1,5
TL