Tìm x,y thuộc Z
a. (2-x).(2y+3)=10
b. (5x+1).(y-2)=-33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(4x^3-36x\)
\(=4x\cdot x^2-4x\cdot9\)
\(=4x\left(x^2-9\right)=4x\left(x-3\right)\left(x+3\right)\)
b:Sửa đề: \(4x^3-y^3+4x^2y-xy^2\)
\(=4x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(4x^2-y^2\right)=\left(x+y\right)\left(2x-y\right)\left(2x+y\right)\)
c: \(a^2+2ab-5a-10b\)
=a(a+2b)-5(a+2b)
=(a+2b)(a-5)
d: \(\left(x+1\right)^3-27\)
\(=\left(x+1\right)^3-3^3\)
\(=\left(x+1-3\right)\left\lbrack\left(x+1\right)^2+3\left(x+1\right)+3^2\right\rbrack\)
\(=\left(x-2\right)\left(x^2+2x+1+3x+3+9\right)\)
\(=\left(x-2\right)\left(x^2-5x+13\right)\)
e: \(4xy^2-4x^2y-y^3\)
\(=y\cdot4xy-y\cdot4x^2-y\cdot y^2\)
\(=-y\left(4x^2-4xy+y^2\right)=-y\left(2x-y\right)^2\)
f: \(\left(5x-y\right)^2-\left(x-2y\right)^2\)
=(5x-y-x+2y)(5x-y+x-2y)
=(4x+y)(6x-3y)
=3(2x-y)(4x+y)
g: \(x^3+2x^2+x-16xy^2\)
\(=x\left(x^2+2x+1-16y^2\right)\)
\(=x\left\lbrack\left(x+1\right)^2-\left(4y\right)^2\right\rbrack\)
=x(x+1-4y)(x+1+4y)
b: \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{y}{3}\right)^2=\left(\dfrac{2}{3}\right)^6\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\\\left(\dfrac{y}{3}\right)^2=\left(\dfrac{8}{27}\right)^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{2}{9}=\dfrac{4}{9}\\\dfrac{y}{3}=\dfrac{8}{27}\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{2}{9}=\dfrac{4}{9}\\\dfrac{y}{3}=-\dfrac{8}{27}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{8}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{8}{9}\end{matrix}\right.\end{matrix}\right.\)
c: =>8x-1=5
=>8x=6
hay x=3/4