Bài 1 Quy Đồng
a, x/3 và y/5 b 2x/3y và x+1/xy^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)
b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)
=8+1-2-10
=-3
a) \(\dfrac{1}{x^3-8}=\dfrac{1}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2}{2\left(x-2\right)\left(x^2+2x+4\right)}\)
\(\dfrac{3}{4-2x}=\dfrac{-3}{2\left(x-2\right)}=\dfrac{-3\left(x^2+2x+4\right)}{2\left(x-2\right)\left(x^2+2x+4\right)}\)
b) \(\dfrac{x}{x^2-1}=\dfrac{x}{\left(x+1\right)\left(x-1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\)
\(\dfrac{1}{x^2+2x+1}=\dfrac{1}{\left(x+1\right)^2}=\dfrac{x-1}{\left(x+1\right)^2\left(x-1\right)}\)
c) \(\dfrac{1}{x+2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)^2}\)
\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)^2}\)
\(\dfrac{5}{2-x}=\dfrac{-5}{x-2}=\dfrac{-5\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^2}\)
d) \(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{3\left(x+y\right)\left(x-y\right)^2}\)
\(\dfrac{2x}{x^2-y^2}=\dfrac{2x}{\left(x+y\right)\left(x-y\right)}=\dfrac{6x\left(x-y\right)}{3\left(x+y\right)\left(x-y\right)^2}\)
\(\dfrac{x^2-xy+y^2}{x^2-2xy+y^2}=\dfrac{x^2-xy+y^2}{\left(x-y\right)^2}=\dfrac{3\left(x^2-xy+y^2\right)\left(x+y\right)}{3\left(x+y\right)\left(x-y\right)^2}=\dfrac{3\left(x^3+y^3\right)}{3\left(x+y\right)\left(x-y\right)^2}\)
c) Ta có:
2x=5y=>x/5=y/2
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/5=y/2=x-y/5-2=15/3=5
=> x=5.5=25; y=5.2=10
d)Đặt x/2=y/5=k
=> x=2k; y=5k=> xy=2k.5k=10k^2=10=> k^2=1=>k=\(\pm\)1
Với k=1=>x=2; y=5
Với k=-1=>x=-2; y=-5
d: \(\dfrac{x}{x+3}=\dfrac{x^2-3x}{\left(x+3\right)\left(x-3\right)}\)
\(\dfrac{1}{3-x}=\dfrac{-1}{x-3}=\dfrac{-x-3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{1}{x^2-9}=\dfrac{1}{\left(x+3\right)\left(x-3\right)}\)
a) Ta có bảng sau:
x-1 | -5 | 5 | 1 | -1 |
y+4 | -1 | 1 | 5 | -5 |
x | -4 | 6 | 2 | 0 |
y | -5 | -3 | 1 | -9 |
Vậy:
b) Ta có bảng sau:
2x+3 | 11 | -11 | 1 | -1 |
y-2 | 1 | -1 | 11 | -11 |
x | 4 | -7 | -1 | -2 |
y | 3 | 1 | 13 | -9 |
Vậy: ...
`@` `\text {Ans}`
`\downarrow`
`a)`
`(x-1)(y+4) = 5`
`=> (x-1)(y+4) \in \text {Ư(5)} = +-1; +-5`
Ta có bảng sau:
\(x-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+4\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | `2` | `6` | `0` | `-4` |
`y` | `-9` | `-5` | `1` | `-8` |
Vậy, ta có các cặp `x,y` thỏa mãn `{2; -9}; {6; -5}; {0; 1}; {-4; -8}`
\(a,\dfrac{x}{3}=\dfrac{5x}{15}\\ \dfrac{y}{5}=\dfrac{3y}{15}\\ b,\dfrac{2x}{3y}=\dfrac{2x.3xy}{y.3xy}=\dfrac{6x^2y}{3xy^2}\\ \dfrac{x+1}{xy^2}=\dfrac{3\left(x+1\right)}{3xy^2}\)
nhắn chậm quá bạn ơi hết h r