tìm GTLN (x-3)3+(-x-1)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐKXĐ:x\ne-1\)
\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)\(\Leftrightarrow B=\frac{3\left(x+1\right)}{\left(x^3+x^2\right)+\left(x+1\right)}\)\(\Leftrightarrow B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)\(\Leftrightarrow B=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)\(\Leftrightarrow B=\frac{3}{x^2+1}\)
Vì \(x^2\ge0\)\(\Rightarrow x^2+1\ge1\)\(\Rightarrow\frac{3}{x^2+1}\le3\)\(\Rightarrow B\le3\)
Dấu " = " xảy ra \(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)( thoả mãn ĐKXĐ )
Vậy \(maxB=3\)\(\Leftrightarrow x=0\)
\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+1\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\frac{3}{x^2+1}\)
Vì \(x^2\ge0\Rightarrow x^2+1\ge1\)
Mà \(\frac{3}{x^2+1}\le3\)Nên \(\Rightarrow B\le3\)
Dấu ''='' xảy ra <=> x = 0
Vậy \(Max_B=3\Leftrightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}=\frac{3\left(x+1\right)}{\left(x^3+x^2\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\frac{3}{x^2+1}\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+1\ge1\forall x\)
\(\Rightarrow\frac{1}{x^2+1}\le1\forall x\)\(\Rightarrow\frac{3}{x^2+1}\le3\forall x\)
hay \(B\le3\)
Dấu " = " xảy ra \(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)
Vậy \(maxB=3\)\(\Leftrightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
24.
\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
\(y_{max}=4\)
26.
\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)
Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)
\(y_{max}=\sqrt{2}\)
b.
\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=5+\left|\dfrac{1}{3}-x\right|\ge5\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
\(B=2-\left|x+\dfrac{2}{3}\right|\le2\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì \(-|x+1|\le0;\forall x\)
\(\Rightarrow3-|x+1|\le3-0;\forall x\)
Hay \(\Rightarrow A\le3;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x+1|=0\)
\(\Leftrightarrow x=-1\)
Vậy MAX A=3 \(\Leftrightarrow x=-1\)
\(B=|x-3|-|x-7|\)
\(=|x-3|-|x-7|\le|x-3-x+7|\)
Hay \(B\le4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)\left(x-7\right)\le0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\x-7\le0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\x-7\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x\ge7\end{cases}}\)(loại )
\(\Leftrightarrow3\le x\le7\)
Vậy MAX B=4 \(\Leftrightarrow3\le x\le7\)
KO chắc
Tích cho tôi đi.![undefined](https://i.imgur.com/z56ZuqHh.png)
\(\left(x-3\right)^3+\left(x-1\right)^3\)
\(\Rightarrow\) Biểu thức không có giá trị nhỏ nhất.
Muốn xác định 1 giá trị nhỏ nhất thì ta đưa về dạng \(A^2\left(x\right)+const\)
Mà đề bài cho mũ 3, sẽ có 2 trường hợp là dương hoặc âm và âm không xuất hiện giá trị nhỏ nhất.
Ngoài ra \(A^2\) có dạng: \(\left|A\right|;\sqrt{A};\left[A\left(x\right)\pm B\left(x\right)\right]^2\ge0;...\)