3+22x-1=24-[42-22-1]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(\Leftrightarrow2^{x-1}=24-16+3-3\)
\(\Leftrightarrow x-1=3\)
hay x=4
\(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\) (sửa đề)
\(\Rightarrow3+2^{x-1}=24-\left[16-\left(4-1\right)\right]\)
\(\Rightarrow3+2^{x-1}=24-\left(16-3\right)\)
\(\Rightarrow3+2^{x-1}=24-13\)
\(\Rightarrow3+2^{x-1}=11\)
\(\Rightarrow2^{x-1}=11-3\)
\(\Rightarrow2^{x-1}=8\)
\(\Rightarrow2^{x-1}=2^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=3+1=4\)
Vậy \(x=4.\)
#\(Toru\)
\(a,\Rightarrow2^{x-1}=24-\left(16-3\right)-3\\ \Rightarrow2^{x-1}=24-13-3\\ \Rightarrow2^{x-1}=8=2^3\\ \Rightarrow x-1=3\Rightarrow x=4\\ b,\Rightarrow\left(19x+50\right):14=25-16=9\\ \Rightarrow19x+50=126\\ \Rightarrow x=4\)
3 + 2x - 1= 24 - [42 - (22 - 1)
3 + 2x - 1= 24 - [42 - 21]
3 + 2x - 1= 24 - 21
3 + 2x - 1= 3
3 + 2x = 3 + 1
3 + 2x = 4
2x = 4 - 3
2x =1
x = 1:2
x = 0,5
Vậy x = 0,5
3 + 2x - 1= 24 - [42 - (22 - 1)
3 + 2x - 1= 24 - [42 - 21]
3 + 2x - 1= 24 - 21
3 + 2x - 1= 3
3 + 2x = 3 + 1
3 + 2x = 4
2x = 4 - 3
2x =1
x = 1:2
x = 0,5
suy ra x = 0,5
Đặt \(A=2^{2x}+2^{2x+1}+...+2^{2x+1918}\)
=>\(2\cdot A=2^{2x+1}+2^{2x+2}+...+2^{2x+1919}\)
=>\(A=2^{2x+1919}-2^{2x}\)
Theo đề, ta có; \(2^{2x+1919}-2^{2x}=2^{1923}-2^4\)
=>\(2^{2x}\cdot\left(2^{2019}-1\right)=2^4\left(2^{2019}-1\right)\)
=>2x=4
=>x=2
1.
$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$
2.
$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$
3. Không phù hợp để tính nhanh
4.
$=15^8-(15^8-1)=1$
5.
$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$
$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$
$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$
$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$
6:
\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)
Phương pháp:
Biểu thức √f(x)�(�) xác định ⇔f(x)≥0.⇔�(�)≥0.
Cách giải:
a) √x−3�−3
Biểu thức √x−3�−3 xác định ⇔x−3≥0⇔�−3≥0 ⇔x≥3.⇔�≥3.
Vậy x≥3�≥3 thì biểu thức √x−3�−3 xác định.
b) √−22x−1−22�−1
Biểu thức √−22x−1−22�−1 xác định ⇔−22x−1≥0⇔−22�−1≥0 ⇔2x−1<0⇔2�−1<0 ⇔x<12⇔�<12
Vậy với x<12�<12 thì biểu thức √−22x−1−22�−1 xác định.
a, \(\sqrt{x-3}\)
điều kiện để biểu thức xác định là:
\(x-3\) ≥ 0
\(x\ge\) 3
b, \(\sqrt{-2x^2-1}\)
Điều kiện để biểu thức trong căn xác định là:
- 2\(x^2\) - 1 ≥ 0
ta có \(x^2\) ≥ 0 ∀ \(x\)
⇒ -2\(x^2\) ≤ 0 ∀ \(x\) ⇒ -2\(x^2\) - 1 ≤ 0 ∀ \(x\)
Vậy không có giá trị nào của \(x\) để biểu thức trong căn có nghĩa hay
\(x\in\) \(\varnothing\)
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5