Tìm \(x,y,z\in Z\)biết: \(x^3+2y^3=4z^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x/2 = z/3 => x = 2/3z
Ta có:
3x - 2y + 4z = 16
=> 3.2/3z - 2.z/3 + 4z = 16
=> 2.z - 2/3.z + 4z = 16
=> 16/3.z = 16
=> z = 16 : 16/3 = 3
=> x = 2/3.3 = 2
=> y = 3/3 = 1
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}\Rightarrow\frac{3x}{6}=\frac{2y}{2}=\frac{4z}{12}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{3x}{6}=\frac{2y}{2}=\frac{4z}{12}=\frac{3x-2y+4z}{6-2+12}=\frac{16}{16}=1\)
\(\frac{3x}{6}=1\) 3x=6 x=2 | \(\frac{2y}{2}=1\) 2y=2 y=1 | \(\frac{4z}{12}=1\) 4z=12 z=3 |
\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}=\frac{3x+3+2y+4+4z-12}{-8+9+20}=\frac{42}{21}=2\)
=>x+1=6=>x=5
y+2=2.(-4)=-8=>y=-10
z-3=10=>x=13
vậy x=5;y=-10;z=13
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3.\left(x+1\right)+2.\left(y+2\right)+4.\left(z-3\right)}{3.3+2.\left(-4\right)+4.5}\)
\(=\frac{3x+3+2y+4+4z-12}{9-8+20}=\frac{\left(3x+2y+4z\right)+\left(3+4-12\right)}{21}\)
\(=\frac{47-5}{21}=2\)
suy ra: \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
\(\frac{x+2}{-4}=2\Rightarrow x+2=-8\Rightarrow x=-6\)
\(\frac{z-3}{5}=2\Rightarrow z-3=10\Rightarrow z=13\)
x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15
adtcdtsbn:
x/4=y/6=z/15=x+y+z/4+6+15=50/25=2
suy ra : x/4=2=>x=4.2=8
y/6=2=>y=2.6=12
z/15=2 => z=15.2=30
Câu hỏi của Trang Đinh Huyền - Toán lớp 7 - Học toán với OnlineMath