Tìm số tự nhiên n để 1n+2n+3n+4n chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a=1 n + 2 n + 3 n + 4 n
Nếu n=0 ⇒A=4⇒A=4( loại )
Nếu n=1 ⇒A=10⇒A=10( thỏa )
Nếu n>2 .
TH1 : n chẵn ⇒n=2k(k∈N)⇒n=2k(k∈N)
⇒A=1+22k+32k+42k
=1+4k+9k+16k
⇒A=1+22k+32k+42k
=1+4k+9k+16k
Với k lẻ => k=2m+1
⇒A=1+42m+1+92m+1+162m+1
=1+16m.4+81m.9+256m.16
⇒A=1+42m+1+92m+1+162m+1
=1+16m.4+81m.9+256m.16
Dễ CM : A⋮/5A⋮̸5 vì A chia 5 dư 1 .
TH2: n lẻ => n=2h+1
⇒A=1+16h.4+81h.9+256h.16
⇒A=1+16h.4+81h.9+256h.16
TT như trên ; ta cũng CM được A không chia hết cho 5
Vậy n=1 thỏa mãn
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10
Với n lẻ thì: \(^{a^n}\)+ \(^{b^n}\) = ( a+ b)*(\(^{a^{n-1}}\)- \(^{a^{n-2}}\) * \(^{b+a^{n-3}}\) * \(^{b^2}\)-........-\(^{a\cdot b^{n2}}\)+ \(^{b^{n-1}}\))
hay:\(^{a^n}\)+ \(^{b^n}\) chia hết cho a+b
\(^{1^n}\)+ \(^{2^n}\)+\(^{3^n}\) + \(^{4^n}\)= ( \(^{1^n}\)+ \(^{4^n}\)) +(\(^{2^n}\)+ \(^{3^n}\))
Vậy với n lẻ \(^{1^n}\)+ \(^{4^n}\) và \(^{2^n}\) + \(^{3^n}\) đều chia hết cho 5 nên N lẻ
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
Ta có công thức:
a13 + a23 + a33 + ... = (a1 + a2 + a3 + ...)2
=> 13 + 23 + 33 + 43 = (1 + 2 + 3 + 4)2 = 102 chia hết cho 5
=> n = 3
Với n lẻ thì an+bn=(a+b)( an-1-an-2.b+an-3.b2-...-a.bn-2+bn-1) hay với n lẻ thì an+bn chia hết cho a+b
1n+2n+3n+4n=(1n+4n)+(2n+3n)
Áp dụng phần trên thì với n lẻ (1n+4n) chia hết cho 5 , 2n+3n chia hết cho 5
Kết luận : n lẻ
Bạn hỏi câu này thiếu rất nhiều điều kiện: có rất nhiều sô n để sô đó chia hết cho 5
vd :n=1;2;6......
Câu hỏi này 0 đúng chủ đề