Tìm n thuộc N thỏa mãn
x mũ 2 - 5x + 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a : \(4x^3-5x^2+6x+9\)
\(=4x^3+3x^2-8x^2-6x+12x+9\)
\(=\left(4x^3+3x^2\right)-\left(8x^2+6x\right)+\left(12x+9\right)\)
\(=x^2\left(4x+3\right)-2x\left(4x+3\right)+3\left(4x+3\right)\)
\(=\left(4x+3\right)\left(x^2-2x+3\right)\)
Câu b : \(5x^3-12x^2+14x-4\)
\(=5x^3-10x^2-2x^2+10x+4x-4\)
\(=\left(5x^3-2x^2\right)-\left(10x^2-4x\right)+\left(10x-4\right)\)
\(=x^2\left(5x-2\right)-2x\left(5x-2\right)+2\left(5x-2\right)\)
\(=\left(5x-2\right)\left(x^2-2x+2\right)\)
Câu c : \(x^3-5x^2+2x+8\)
\(=x^3+x^2-6x^2-6x+8x+8\)
\(=\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(8x+8\right)\)
\(=x^2\left(x+1\right)-6x\left(x+1\right)+8\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+8\right)\)
\(=\left(x+1\right)\left[x^2-2x-4x+8\right]\)
\(=\left(x+1\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x-4\right)\)
Câu d : \(4x^3+5x^2+10x-12\)
\(=4x^3+8x^2-3x^2+16x-6x-12\)
\(=\left(4x^3-3x^2\right)+\left(8x^2-6x\right)+\left(16x-12\right)\)
\(=x^2\left(4x-3\right)+2x\left(4x-3\right)+4\left(4x-3\right)\)
\(=\left(4x-3\right)\left(x^2+2x+4\right)\)
Số tự nhiên n thỏa mãn \(n^k\left(k\inℕ^∗\right)\) có tận cùng là 9 khi và chỉ khi \(n\) có chữ số tận cùng là 3, 7 hoặc 9.
TH1: Nếu \(n\) có chữ số tận cùng là \(3\) thì ta có nhận xét là \(n^{4k}\) có chữ số tận cùng là 1 với mọi số tự nhiên \(k\). Thật vậy, với \(k=0\) thì \(n^0=1\) có tận cùng là 9. Giả sử khẳng định đúng đến \(k=l\). Với \(k=l+1\) thì \(n^{4\left(l+1\right)}=n^{4l+4}=n^4.n^{4l}=\overline{A1}.\overline{B1}\) có chữ số tận cùng là 1. Vậy khẳng định được chứng minh. Do đó, \(n^{9012}=n^{4.2253}\) có chữ số tận cùng là 1, không thỏa ycbt.
TH2: \(n\) có chữ số tận cùng là 7 thì làm tương tự với TH1, \(n^{4k}\) luôn có chữ số tận cùng là 7 nên không thỏa ycbt.
TH3: \(n\) có chữ số tận cùng là 9 thì \(n^{2k}\) luôn có chữ số tận cùng là 1. Như vậy, không thể có số tự nhiên \(n\) nào thỏa mãn ycbt.
\(x^3+44=52\\ =>x^3=52-44\\ =>x^3=8=2^3\\ =>x=2\left(TM\right)\)
Vậy x = 2
a: x<50
mà x tròn chục
nên \(x\in\left\{10;20;30;40\right\}\)
b: 33<x<77
mà x tròn chục
nên \(x\in\left\{40;50;60;70\right\}\)