K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

\(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow x-3=\left(x-3\right)^2\)

\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

___________

\(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot\dfrac{1}{2}\cdot x^2+3\cdot\left(\dfrac{1}{2}\right)^2\cdot x+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{1}{2}\)

\(\Leftrightarrow x=-\dfrac{1}{4}\)

loading...  loading...  

21 tháng 6 2017

\(\left(\dfrac{1}{2}x+5\right)^3=\dfrac{1}{8}x^3+\dfrac{15}{4}x^2+\dfrac{75}{2}x+25\)

\(8x^3+\dfrac{1}{64}=\left(2x+\dfrac{1}{4}\right)\left(4x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)\(\left(4x-\dfrac{1}{2}\right)^3=64x^3-24x^2+3x-\dfrac{1}{8}\)

25 tháng 7 2018

+) \(\left(x-3\right)^2=16\)

\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^2=4^2\\\left(x-3\right)^2=\left(-4\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

Vậy x = 7 hoặc x = -1

+) \(\left(1-3x\right)^3=-64\)

\(\Rightarrow\left(1-3x\right)^3=\left(-4\right)^3\)

\(\Rightarrow1-3x=-4\)

\(\Rightarrow3x=1+4\)

\(\Rightarrow3x=5\)

\(\Rightarrow x=5:3\)

\(\Rightarrow x=\frac{5}{3}\)

Vậy  \(x=\frac{5}{3}\)

+) \(x^{13}=27.x^{10}\)

\(\Rightarrow x^{13}:x^{10}=27\)

\(\Rightarrow x^3=27\)

\(\Rightarrow x^3=3^3\)

\(\Rightarrow x=3\)

Vậy x = 3

+) \(\left(4x-1\right)^2=\left(1-4x\right)^4\)

\(\Rightarrow\left(4x-1\right)^2=\left(4x-1\right)^4\)

\(\Rightarrow\left(4x-1\right)^2-\left(4x-1\right)^4=0\)

\(\Rightarrow\left(4x-1\right)^2\left[1-\left(4x-1\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\1-\left(4x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\\left(4x-1\right)^2=1\end{cases}}\)

TH 1 : \(\left(4x-1\right)^2=0\Rightarrow4x-1=0\Rightarrow4x=1\Rightarrow x=\frac{1}{4}\)

TH 2 : \(\left(4x-1\right)^2=1\Rightarrow\orbr{\begin{cases}4x-1=1\\4x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4x=2\\4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)

Vậy  \(x\in\left\{\frac{1}{4};\frac{1}{2};0\right\}\)

_Chúc bạn học tốt_

25 tháng 7 2018

a, (x-3)^2 = 16

=> (x-3)^2=4^2

=> x-3=4

=> x= 4+3

=> x = 7 .Vậy x =7

b,(1-3x)^3 = 64

=> ( 1-3x)^3 = 4^3

=> 1-3x = 4

=> 3x = 1-4

=> 3x = -3

=> x = -1 . Vậy x = -1

c, x^13 = 27.x^10

=> x^13 : x^10 = 27

=> x^3 = 3^3

=> x = 3 . Vậy x = 3

5 tháng 7 2018

a) 4x2+4x+1

= (2x+1)2

b) x2-16x+64

= (x-8)2

c) 4x2-9y2

= (2x+3y)(2x-3y)

d) ( x-3).(x^2+3x+9)

11 tháng 7 2023

\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)

\(M=\left(7-2x\right)\left[\left(2x\right)^2+2x\cdot7+7^2\right]-\left(64-8x^3\right)\)

\(M=\left[7^3-\left(2x\right)^3\right]-\left(64-8x^3\right)\)

\(M=343-8x^3-64+8x^3\)

\(M=279\)

Vậy M có giá trị 279 với mọi x

\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)

\(P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3\)

\(P=16x^3-8x^2+4x-2\)

Thay \(x=10\) vào P ta có:

\(P=16\cdot10^3-8\cdot10^2+4\cdot10-2=15238\)

Vậy P có giá trị 15238 tại x=10

a: M=343-8x^3-64+8x^3=279

b: P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3

=16x^3-8x^2+4x-2

=16*10^3-8*10^2+4*10-2=15238

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

1.

$\sqrt{3x^2}-\sqrt{12}=0$

$\Leftrightarrow \sqrt{3x^2}=\sqrt{12}$

$\Leftrightarrow 3x^2=12$

$\Leftrightarrow x^2=4$

$\Leftrightarrow (x-2)(x+2)=0\Leftrightarrow x=\pm 2$

 

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

2. 

$\sqrt{(x-3)^2}=9$

$\Leftrightarrow |x-3|=9$

$\Leftrightarrow x-3=9$ hoặc $x-3=-9$

$\Leftrightarrow x=12$ hoặc $x=-6$

13 tháng 2 2018

\(\sqrt{2x^2+4x-1}=\sqrt{2\left(x+\dfrac{2-\sqrt{6}}{2}\right)\left(x+\dfrac{2+\sqrt{6}}{2}\right)}\)

\(\Rightarrow\) BXD :

\(x\) \(-\infty\) \(\dfrac{-2-\sqrt{6}}{2}\) \(\dfrac{-2+\sqrt{6}}{2}\) \(+\infty\)
\(x+\dfrac{2-\sqrt{6}}{2}\) \(-\) \(-\) \(-\) \(-\) \(0\) \(+\) \(+\)
\(x+\dfrac{2+\sqrt{6}}{2}\) \(-\) \(-\) \(0\) \(+\) \(+\) \(+\) \(+\)
\(\sqrt{2x^2+4x-1}\) \(+\) \(+\) \(0\) oxđ \(0\) \(+\) \(+\)

\(\Rightarrow\) \(\sqrt{2x^2+4x-1}\) xác định \(\Leftrightarrow x\in\left(-\infty;\dfrac{-2-\sqrt{6}}{2}\right)\cup\left(\dfrac{-2+\sqrt{6}}{2};+\infty\right)\)

ta có : \(\sqrt{2x^2+4x-1}>x+1\)

\(\Leftrightarrow\sqrt{2x^2+4x-1}-x-1>0\)

\(\Rightarrow\) BXD :

\(x\) \(-\infty\) \(\dfrac{-2-\sqrt{6}}{2}\) \(-1\) \(\dfrac{-2+\sqrt{6}}{2}\) \(+\infty\)
\(\sqrt{2x^2+4x-1}\) \(+\) \(+\) \(0\) oxđ oxđ oxđ \(0\) \(+\)
\(-x-1\) \(+\) \(+\) \(\dfrac{\sqrt{6}}{2}\) bỏ \(0\) bỏ \(\dfrac{-\sqrt{6}}{2}\) \(-\)
\(f\left(x\right)\) \(+\) \(+\) \(0\) bỏ bỏ \(0\) không rỏ dấu

bn nào giỏi lm tiếp đi nha

7 tháng 9 2021

a) \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b) \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c) \(9-6x+x^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

a: Ta có: \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b: Ta có: \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

hay \(x=\dfrac{1}{2}\)

c: ta có: \(x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

hay x=3

17 tháng 8 2023

\(318-5\left(x-64\right)=103\)

\(\Rightarrow5\left(x-64\right)=318-103\)

\(\Rightarrow5\left(x-64\right)=215\)

\(\Rightarrow x-64=43\)

\(\Rightarrow x=43+64\)

\(\Rightarrow x=107\)

_____________

\(4^x\cdot5+216=296\)

\(\Rightarrow4^x\cdot5=296-216\)

\(\Rightarrow4^x\cdot5-80\)

\(\Rightarrow4^x=16\)

\(\Rightarrow4^x=4^2\)

\(\Rightarrow x=2\)

___________

\(376-6^x:3=364\)

\(\Rightarrow6^x:3=376-364\)

\(\Rightarrow6^x:3=12\)

\(\Rightarrow6^x=36\)

\(\Rightarrow6^x=6^2\)

\(\Rightarrow x=2\)

___________

\(\left(4x-1\right)^2=121\)

\(\Rightarrow\left(4x-1\right)^2=11^2\)

\(\Rightarrow\left[{}\begin{matrix}4x-1=11\\4x-1=-11\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x=12\\4x=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

17 tháng 8 2023

107

2

2

TH1: 3; TH2: -5/2