rút gọn với x < 0 \(3\sqrt{4x^6}-3x^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=3*\(\sqrt{4\cdot\left(x^3\right)^2}\)-3x^3
=3*2*x^3-3*x^3
=3x^3
\(P=3\sqrt{4x^6}-3x^3=\sqrt{36x^6}-3x^3=|6x^3|-3x^3=-9x^3\left(x< 0\right)\)
\(\sqrt{4x^2-4x+1}+2=3x\)
Vì \(VT\ge2\Rightarrow VP\ge2\Rightarrow x\ge\dfrac{2}{3}\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}+2=3x\Rightarrow\left|2x-1\right|+2=3x\)
\(\Rightarrow2x-1+2=3x\left(x\ge\dfrac{2}{3}\right)\Rightarrow x=1\)
\(7\sqrt{a}-5b\sqrt{16a^3}+4a\sqrt{25ab^2}-3\sqrt{16a}\)
\(=7\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-12\sqrt{a}=-5\sqrt{a}\)
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
a)\(\)https://www.cymath.com/answer?q=2sqrt(27)-6sqrt(4%2F3)%2B3%2F5sqrt(75)
\(M=2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}=2\sqrt{3^2.3}-6\sqrt{\frac{2^2.3}{3^2}}+\frac{3}{5}\sqrt{5^2.3}=.\)
\(=6\sqrt{3}-4\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
\(P=\frac{2}{x-1}\sqrt{\frac{x^2-2x+1}{4x^2}}.Với...0< x< 1\Leftrightarrow\) \(P=\frac{2}{x-1}\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{(x-1)}.\frac{\left(1-x\right)}{2x}=\frac{-1}{x}.\)
\(A=3\sqrt{4x^6}-3x^3=3\sqrt{\left(2x^3\right)^2}-3x^3\\=3\left|2x^3\right|-3x^3=3.\left(-2x^3\right)-3x^3\left(Do:x\le0\right)\\ =-6x^3-3x^3=-9x^3\\ B=\left(a-3\right)b^3.\sqrt{\dfrac{25}{\left(a-3\right)^2b^4}}=\left(a-3\right)b^3.\sqrt{\left[\dfrac{5}{\left(a-3\right).b^2}\right]^2}\\ =\left(a-3\right)b^3.\left|\dfrac{5}{\left(a-3\right)b^2}\right|=5b\)
\(\sqrt{2x-5}=3\\ \Rightarrow2x-5=3^2\\ \Leftrightarrow2x=9+5=14\\ Vậy:x=\dfrac{14}{2}=7\\ \Rightarrow S=\left\{7\right\}\)
a) \(4x-\sqrt{x^2-4x+4}=4x-\sqrt{\left(x-2\right)^2}=4x-\left(x-2\right)=3x+2\)
b) \(3x+\sqrt{9+6x+x^2}=3x+\sqrt{\left(x+3\right)^2}=3x-\left(x+3\right)=2x-3\)
c) \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
d) \(\frac{\sqrt{x^2+4x+4}}{x+2}=\frac{\sqrt{\left(x+2\right)^2}}{x+2}=\frac{\left|x+2\right|}{x+2}\)( 1 )
với x < -2 thì : \(\left(1\right)\Leftrightarrow\frac{-\left(x+2\right)}{x+2}=-1\)
với x > -2 thì : \(\left(1\right)\Leftrightarrow\frac{\left(x+2\right)}{x+2}=1\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right).\left(\sqrt{x}+\sqrt{3}\right)}.\left(2\sqrt{x}+\sqrt{12}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}.2\left(\sqrt{x}+\sqrt{3}\right)\)
\(=2.\left(\sqrt{x}-\sqrt{3}\right)\)
gọi bieur thức đó là A ta được :
A = 6 | x3 | - 3x3
Vì x < 0 nên A = -6x3 - 3x3 = -9x3