2^x−1 + 3^3= 5^2 + 2.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2.5^2.3^2+\left\{\left[2.5^3-\left(5x+4\right).5\right]:\left(2^2.3.5\right)\right\}=453\)
\(2.25.9+\left\{\left[2.125-\left(5x+4\right).5\right]:\left(4.3.5\right)\right\}=453\)
\(50.9+\left\{\left[250-\left(5x+4\right).5\right]:60\right\}=453\)
\(450+\left\{\left[250-\left(5x+4\right).5\right]:60\right\}=453\)
\(\left[250-\left(5x+4\right).5\right]:60=453-450\)
\(\left[250-\left(5x+4\right).5\right]:60=3\)
\(250-\left(5x+4\right).5=3.60\)
\(250-\left(5x+4\right).5=180\)
\(\left(5x+4\right).5=250-180\)
\(\left(5x+4\right).5=70\)
\(5x+4=70:5\)
\(5x+4=14\)
\(5x=14-4\)
\(5x=10\)
\(x=10:5\)
\(x=2\)
Vậy \(x=2\)
b) \(\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=-2\\x-\frac{1}{3}=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(-2\right)+\frac{1}{3}\\x=2+\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{7}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{-5}{7};\frac{7}{3}\right\}\)
1) \(7.4^x=7.4^3\Leftrightarrow4^x=4^3;x=3\)
2) \(\frac{3}{2.5^x}=\frac{3}{2.5^{12}}\Leftrightarrow5^x=5^{12};x=12\)
\(2^x=2.2^8=2^9;x=9\)
4) \(5.3^x=7.3^5-2.3^5\Leftrightarrow5.3^x=3^5.\left(7-2\right)\)
\(\Leftrightarrow3^5.x=3^5.5;x=5\)
a. Chắc đề là: \(\lim\dfrac{2-5^{n-2}}{3^n+2.5^n}=\lim\dfrac{2\left(\dfrac{1}{5}\right)^{n-2}-1}{9\left(\dfrac{3}{5}\right)^{n-2}+50}=-\dfrac{1}{50}\)
b. \(=\lim\dfrac{2\left(\dfrac{1}{5}\right)^n-25}{\left(\dfrac{3}{5}\right)^n-2}=\dfrac{25}{2}\)
2.
Đặt \(f\left(x\right)=x^4+x^3-3x^2+x+1\)
Hàm f(x) liên tục trên R
\(f\left(0\right)=1>0\) ; \(f\left(-1\right)=-3< 0\)
\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc khoảng \(\left(-1;0\right)\)
Hay pt đã cho luôn có ít nhất 1 nghiệm âm lớn hơn -1
3.
Ta có: M là trung điểm AD, N là trung điểm SD
\(\Rightarrow\) MN là đường trung bình tam giác SAD
\(\Rightarrow MN||SA\Rightarrow\left(MN,SC\right)=\left(SA,SC\right)\)
Ta có: \(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(SA=SC=a\)
\(\Rightarrow SA^2+SC^2=AC^2\Rightarrow\Delta SAC\) vuông tại S hay \(SA\perp SC\)
\(\Rightarrow\) Góc giữa MN và SC bằng 90 độ
Lời giải:
1.
$3^{x+2}+4.3^{x+1}=7.3^6$
$3^{x+1}.3+4.3^{x+1}=7.3^6$
$3^{x+1}(3+4)=7.3^6$
$3^{x+1}.7=7.3^6$
$\Rightarrow 3^{x+1}=3^6$
$\Rightarrow x+1=6$
$\Rightarrow x=5$
2.
$5^{x+4}-3.5^{x+3}=2.5^{11}$
$5^{x+3}.5-3.5^{x+3}=2.5^{11}$
$5^{x+3}(5-3)=2.5^{11}$
$2.5^{x+3}=2.5^{11}$
$\Rightarrow 5^{x+3}=5^{11}$
$\Rightarrow x+3=11$
$\Rightarrow x=8$
3.
$4^{x+3}-3.4^{x+1}=13.4^{11}$
$4^{x+1}.4^2-3.4^{x+1}=13.4^{11}$
$4^{x+1}.16-3.4^{x+1}=13.4^{11}$
$13.4^{x+1}=13.4^{11}$
$\Rightarrow 4^{x+1}=4^{11}$
$\Rightarrow x+1=11$
$\Rightarrow x=10$
a) 2/2.5 + 2/5.8 + 2/8.11 + ... + 2/x(x+3) = 7/23
3/2.5 + 3/5.8 + 3/8.11 + ... + 3/x(x+3) = 21/46
1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/x - 1/x+1 = 21/46
1/2 - 1/x+1 = 21/46
=> 1/x+1 = 1/23
=> x + 1 = 23
=> x = 22
Vậy x = 22.
b) 3/4 . x - 1/5 = 7/4 . x + 11/5
3/4 . x - 7/4 . x = 1/5 + 11/5
x (3/4 - 7/4) = 12/5
-x = 12/5
x = -12/5
Vậy x = -12/5.
\(2^{x-1}+3^3=5^2+2\cdot5\)
\(2^{x-1}+9=25+10\)
\(2^{x-1}+9=35\)
\(2^{x-1}=35-9\)
\(2^{x-1}=26\)
Đề bài sai nhá em
\(x^{10}=x\Leftrightarrow x^{10}-x=0\Leftrightarrow x.\left(x^9-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^9-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\\ \)
Đây là bài tìm x, mn giải từng bước ra giúp em nhé
2x-1+33=52+2.5
2x-1+27=25+10
2x-1+27=35
2x-1= 35-27=8
=> 2x-1=23
=> x-1=3 => x=3+1=4
Vậy x=4
_HT_