Phan tich da thuc thanh nhan tu: a^2+2ab+b^2-ac-bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-b^2-ac+bc=\left(a^2-b^2\right)-\left(ac-bc\right)=\left(a-b\right)\left(a+b\right)-c\left(a-b\right)=\left(a-b\right)\left(a+b-c\right)\)
Ta có
25 – a 2 + 2 a b – b 2 = 25 – ( a 2 – 2 a b + b 2 ) = 5 2 – ( a – b ) 2
= (5 + a – b)(5 – a + b)
Đáp án cần chọn là: D
ax - bx - a² + 2ab - b²
= (ax - bx) - (a² - 2ab + b²)
= x(a - b) - (a - b)²
= (a - b)(x - a + b)
phân tích bằng đặt ẩn phụ=))
Ta có:\(\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2\)
\(=\left(a^2+b^2+c^2\right)\left[\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\right]+\left(ab+bc+ca\right)^2\)
Đặt:\(a^2+b^2+c^2=x;ab+bc+ca=y\),ta có:
\(x\left(x+2y\right)+y^2=x^2+2xy+y^2=\left(x+y\right)^2\)
Thay vào,ta được:\(\left(x+y\right)^2=\left(a^2+b^2+c^2+ab+bc+ca\right)^2\)
Biểu thức này không phân tích thành nhân tử được
Muốn phân tích được thành nhân tử thì cần có thêm số hạng \(c\left(a^2+b^2+ab\right)\)
\(a^2-b^2-2x\left(a-b\right)=\left(a-b\right)\left(a+b\right)-2x\left(a-b\right)=\left(a-b\right)\left(a+b-2x\right)\)
\(a^2-b^2-2x\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)-2x\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2x\right)\)
\(=\left(b^2+c^2+2bc-a^2\right)\left(b^2+c^2-2bc-a^2\right)\)
\(=\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)
a2 + 2ab + b2 - ac - bc
= (a+b)2 -c(a+b)
= (a+b)(a+b-c)