K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

y2-(y+x)+xy+x2+3

14 tháng 2 2016

min P=x^2+y^2+xy-3(x+y)+3

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

19 tháng 7 2019

Đề a,b bạn ghi mik ko hiểu

c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)

Mà  \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)

28 tháng 10 2018

\(x+y=1\Rightarrow x=1-y\)        

\(A=x^3+y^3+xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2+y^2\) (vì x + y = 1)

\(=\left(1-y\right)^2+y^2\)

\(=2y^2-2y+1\)

\(=2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)

Dấu "=" xảy ra khi: \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\Rightarrow x=1-y=\frac{1}{2}\)

Vậy GTNN của A là \(\frac{1}{2}\)khi \(x=y=\frac{1}{2}\)

28 tháng 10 2018

\(A=x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2-xy+y^2+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

Nên min A là \(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)

5 tháng 9 2017

(x+y)(x2-xy+y2)+(x-y)(x2+xy+y2)

=x3-x2y+xy2+x2y-xy2+y3+x3+x2y+xy2-x2y-xy2-y3

=2x3

Thay x=3 ta có:

2x3=2 x 33=2x27=54

5 tháng 9 2017

cảm ơn bạn