rút gọn phân thức sau : 9x^2 y^2 + 3x^2 / 12xy^5 + 4xy^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{2x^3-x^2-2x-1}{x^3+3x^2-x-3}=\frac{2x^3-\left(x^2+2x+1\right)}{x^2\left(x+3\right)-\left(x+3\right)}=\frac{2x^3-\left(x+1\right)^2}{\left(x+3\right)\left(x^2-1\right)}=\frac{2x^3-\left(x+1\right)^2}{\left(x+3\right)\left(x-1\right)\left(x+1\right)}=\frac{2x^3-\left(x+1\right)}{\left(x+3\right)\left(x-1\right)}\)b)
\(\frac{x^2-3x+2}{x^3-3x^2+3x-1}=\frac{x\left(x-2\right)-\left(x-2\right)}{\left(x-1\right)^3}=\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)^3}=\frac{x-2}{\left(x-1\right)^2}\)
c)
\(\frac{9x^2y^2+3x^2}{12xy^5+4xy^3}=\frac{3x^2\left(3y^2+1\right)}{4xy^3\left(3y^2+1\right)}=\frac{3x^2}{4xy^3}\)
@@@@ỦNG HỘ NHOA@@@@
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
Học tốt <3
x(3x-1)+(9x-5)(x-2)=3x2-x+9x(x-2)-5(x-2)=3x2-x+9x2-18x-5x+10=12x2-22x+10
a)4x2+12xy+9y2= (2x)2+2.2x.3y+(3y)2=(2x+3y)2
b)y2+1-2y= y2-2.y.1+12=(y-1)2
\(=\dfrac{3\left(x+1\right)\left(3x-5\right)}{-\left(3x-5\right)\left(3x+5\right)}=\dfrac{-3\left(x+1\right)}{3x+5}\)
\(a.\)
\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)
\(b.\)
\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)
a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)
\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)
\(=\dfrac{4x+1}{4x-1}\)
b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)
\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{y-2x}{y+2x}\)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b: \(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
d: \(=9x^2+6x+1-9x^2+6x-1=12x\)
\(\dfrac{9x^2y^2+3x^2}{12xy^5+4xy^3}=\dfrac{3x^2\left(3y^2+1\right)}{4xy^3\left(3y^2+1\right)}=\dfrac{3x}{4y^3}\)
dễ mà