K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Ta có \(B=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{2}{2010}+1\right)+\left(\frac{1}{2011}+1\right)+1\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2010}+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)\)

B=2012.A

=>A/B=1/2012

8 tháng 4 2017

a/b= 1/2012 nha bạn 

tích

3 tháng 2 2017

kobiet

15 tháng 4 2017

Ta có:\(1-\frac{2010}{2010}=1-1=0\)

Tích A= (1-1/2010).(1-2/2010).(1-3/2010)....(1-2011/2010) chứa thừa số \(1-\frac{2010}{2010}=0\)

Vậy tích A=(1-1/2010).(1-2/2010).(1-3/2010)....(1-2011/2010)=0(Vì có chứa thừa số 0)

4 tháng 5 2017

Ta có \(1-\frac{2010}{2010}=1-1=0\)

Mà \(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)

Nên \(A=...0\)\(=0\)

7 tháng 6 2019

Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)

Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.

7 tháng 6 2019

Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)

\(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(1-\frac{1}{2011}\)

\(\frac{2010}{2011}\)

12 tháng 2 2018

    (1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011).(170170 - 7.11.13.170)

= (1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011).(170170 - 170170)

= (1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011).   0

=                     0

19 tháng 2 2018

Ta có :           ( 1 + 2 + 3 +...+ 2010 ) . ( 1 + 2^2 + 3^3 + ... + 2010^2010 + 2011^2011 ) . ( 17017 - 7 . 11 . 13 . 17 ) 

               =             A        .    B     . (      17017 -    77 . 221 ) 

               =             A        .    B     . (       17017 - 17017 ) 

               =            A        . B     . 0 

               =        0   

Tham khảo cách của mk nhé ! 

19 tháng 2 2018

17017=7.11.13.17

=> 17017-7.11.13.17=0

=> biểu thức =0

19 tháng 3 2017

*2010/1+2009/2+...+1/2010

=(2009/2+1)+(2008/3+1)+...+(1/2010+1)+1

=2011/2+2011/3+..+2011/2010+2011/2011

=2011(1/2+1/3+1/4+...+1/2011)

=> C=2011/1=2011