Cho x,y > 0 và x+y=0, tìm giá trị của N = \(\frac{1}{x}+\frac{1}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)
Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)
Dấu "=" xảy ra khi x = y = a
vậy ....
\(Q=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\le3-\frac{16}{x+y+z+6}=\frac{1}{3}\)
dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)
Đơn giản biểu thức ta được:
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(-x\right).\left(-y\right)}{xy}=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=1+\frac{1}{xy}+\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{1}{xy}+\frac{x+y}{xy}\)
\(=1+\frac{1}{xy}+\frac{1}{xy}=1+\frac{2}{xy}\)
Ta bắt đầu tìm \(MIN:\)
Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge1+2\div\frac{1}{4}=9\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=9\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(MIN_B=9\Leftrightarrow x=y=\frac{1}{2}\)
Tìm \(MAX\) cho bạn luôn:
Ta đặt: \(x=\sin^2\alpha;y=\cos^2\alpha\left(ĐK:a\ne\frac{\pi}{4}+k\pi\right)\)
Ta có: \(B=\left(1-\frac{1}{\sin^4\alpha}\right)\left(1-\frac{1}{\cos^4\alpha}\right)\)
\(=\frac{\left(\sin^2\alpha-1\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha-1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4\alpha}\)
\(=\frac{\left(\sin^2\alpha.\cos^2\alpha\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4a}\)
\(=\frac{\sin^2\alpha.\cos^2\alpha+2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{8}{\sin^22\alpha}\)
Để \(B_{max}\Leftrightarrow\sin^22a\) nhỏ nhất \(\Rightarrow\cos^22\alpha\) tiến lên 1
\(\Rightarrow\alpha\) tiến đến 0 hoặc \(\pi\Rightarrow x\) hoặc \(y\) tiến đến 0
Vậy không tìm được \(B_{max}\)
AP DUNG BDT CAUCHY-SCHWAR : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))
...Cauchy-Schwarz:
\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)
Giải tiếp t cái dấu = :v
Ta có:
\(3=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le1\)
Ta lại có:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{3}{\sqrt[6]{xyz}}\ge\frac{3}{1}=3\)
Áp dụng bất đẳng thức Cauchy , ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
<=> \(xyz\ge3\sqrt[3]{xyz}\)
<=> \(x^3y^3z^3\ge27xyz\)
<=> \(x^2y^2z^2\ge27\)
<=> \(\sqrt[3]{x^2y^2z^2}\ge3\)
Ta có
\(P=\frac{1}{x^2+yz+yz}+\frac{1}{y^2+zx+zx}+\frac{1}{z^2+xy+xy}\le\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}\)
\(=\frac{1}{\sqrt[3]{x^2y^2z^2}}\le\frac{1}{3}\)
Vậy Max = 1/3
Áp dụng bất đẳng thức Cô-si ta có :
\(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}\)
\(=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{xy}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{xy}}\)
\(\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}\left(x+y-\frac{x+y}{2}\right)}{\sqrt{xy}}\)
\(=\frac{x+y}{\sqrt[4]{xy}}\ge\frac{x+y}{\sqrt{\frac{x+y}{2}}}=\frac{1}{\sqrt{\frac{1}{2}}}=\sqrt{2}\)
Dấu "=" khi x = y = 1/2