Tìm x,y E Z
a)(x2-1).(y+1)=0
nnhanh chút
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
Vì (2x+1)(y-5)=12
=>2x+1 và y-5\(\varepsilon\) Ư(12)={1;3;4;2;6}
Vì 2x+1 là số lẻ=>2x+1={1;3}
2x+1 | 1 | 3 |
y-5 | 12 | 4 |
x | 0 | 1 |
y | 7 | 9 |
2x+1 = 1 ; = 3 ; = 4 ; = 2 ; = 12 ; = 6
x = không thỏa mãn ; = 1 ; = không thỏa mãn ; không thỏa mãn ; = không thỏa mãn ; không thỏa mãn
y - 5 = 1 ; =2; = 3 ; = 4 ; = 6 ; = 12
y = 6 ; = 7; =8 ; = 9 ; = 11; = 17
Để (2x + 1) ( y - 5 ) = 12 thì 2 thừa số là 1;12 hoặc 2;6 hoặc 3;4
Vậy để (2x + 1) ( y - 5 ) = 12 thì (2x + 1) ( y - 5 ) = 3 . 4
Hay : x = 1, y = 9
\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a,9x^2+y^2+2z^2−18x+4z−6y+20=0
⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0
⇔x=1;y=3;z=−1
b,5x^2+5y^2+8xy+2y−2x+2=0
⇔4(x+y)2+(x−1)2+(y+1)2=0
⇔x=−y;x=1y=−1⇔x=1y=−1
c,5x^2+2y^2+4xy−2x+4y+5=0
⇔(2x+y)^2+(x−1)^2+(y+2)^2=0
⇔2x=−y;x=1;y=−2
⇔x=1;y=−2
d,x^2+4y^2+z^2=2x+12y−4z−14
⇔(x−1)^2+(2y−3)^2+(z+2)^2=0
⇔x=1;y=3/2;z=−2
e: Ta có: x^2−6x+y2+4y+2=0
⇔x^2−6x+9+y^2+4y+4−11=0
⇔(x−3)^2+(y+2)^2=11
Dấu '=' xảy ra khi x=3 và y=-2
`đk:x ne 1`
`A in ZZ`
`=>x^2 vdots x-1`
`=>x^2-1+1 vdots x-1`
`=>(x-1)(x+1)+1 vdots x-1`
`=>1 vdots x-1`
`=>x-1 in Ư(1)={1,-1}`
`=>x in {0,2}`
Vậy `x in {0,2}` thì `A in ZZ`
tìm x;y;z
A) \(\dfrac{2}{5}.\left(x+\dfrac{1}{2}\right)=1\)
B) X;Y;Z tỉ lệ nghich với 2;3;5và x+y+z=62
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y+z}{15+10+6}=\dfrac{62}{31}=2\)
Do đó: x=30; y=20; z=12
THAM KHẢO:
a) \(\dfrac{2}{5}.\left(x+\dfrac{1}{2}\right)=1\)
\(\left(x+\dfrac{1}{2}\right)=1:\dfrac{2}{5}\)
\(\left(x+\dfrac{1}{2}\right)=1.\dfrac{5}{2}\)
\(x+\dfrac{1}{2}=\dfrac{5}{2}\)
\(x=\dfrac{5}{2}-\dfrac{1}{2}\)
Vậy \(x=\dfrac{4}{2}=2\)
b) X;Y;Z tỉ lệ nghich với 2;3;5và x+y+z=62
Vì x, y, z tỉ lệ nghịch với 2, 3, 5 nên ta có:
\(2x=3y=z5=>\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y+z}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{62}{\dfrac{31}{30}}=60\)
+) \(\dfrac{x}{\dfrac{1}{2}}=60=>x=30\)
+) \(\dfrac{y}{\dfrac{1}{3}}=60=>y=20\)
+) \(\dfrac{z}{\dfrac{1}{5}}=60=>z=12\)
Vậy x=30
y=20
z=12
Tick cho mình nhé. Chúc bạn học tốt!
chắc đề cho x,y chứ x+y=6,x-y=4,xy=5
(làm ra bạn tự thay số vào tính)
a,\(=>A=\left(x+y\right)^2-2xy=.....\)
b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)
c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)
d,\(=>D=\dfrac{x+y}{xy}=.....\)
e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)
[x2-1].[y+1]=0
<=> x2-1=0 => x2=0+1=1 =>x=1
hoặc y+1=0 =>y= -1
Vậy x=1
y= -1
Đúng thì tich giùm nha