K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

[x2-1].[y+1]=0

<=> x2-1=0 => x2=0+1=1 =>x=1 

hoặc y+1=0 =>y= -1

Vậy x=1

y= -1

Đúng thì tich giùm nha

19 tháng 12 2021

Bài 1: 

a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

29 tháng 2 2016

Vì (2x+1)(y-5)=12

=>2x+1 và y-5\(\varepsilon\) Ư(12)={1;3;4;2;6}

Vì 2x+1 là số lẻ=>2x+1={1;3}

2x+113
y-5124
x01
y79
29 tháng 2 2016

2x+1 = 1                          ;  = 3   ;   = 4                      ;  = 2              ;       = 12                        ; = 6

x       = không thỏa mãn    ;  = 1   ;   = không thỏa mãn ; không thỏa mãn ;  = không thỏa mãn  ;    không thỏa mãn

y - 5 = 1     ;  =2;     = 3 ;  = 4 ; = 6 ; = 12

y =      6     ; = 7;     =8 ;  = 9 ; = 11; =  17

Để (2x + 1) ( y - 5 ) = 12 thì 2 thừa số là 1;12 hoặc 2;6 hoặc 3;4 

Vậy để (2x + 1) ( y - 5 ) = 12 thì (2x + 1) ( y - 5 ) = 3 . 4 

Hay : x = 1, y = 9

8 tháng 9 2021

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

8 tháng 9 2021

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

d,x^2+4y^2+z^2=2x+12y−4z−14

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

⇔x=1;y=3/2;z=−2

e: Ta có: x^2−6x+y2+4y+2=0

⇔x^2−6x+9+y^2+4y+4−11=0

⇔(x−3)^2+(y+2)^2=11

Dấu '=' xảy ra khi x=3 và y=-2

 

13 tháng 6 2021

`đk:x ne 1`

`A in ZZ`

`=>x^2 vdots x-1`

`=>x^2-1+1 vdots x-1`

`=>(x-1)(x+1)+1 vdots x-1`

`=>1 vdots x-1`

`=>x-1 in Ư(1)={1,-1}`

`=>x in {0,2}`

Vậy `x in {0,2}` thì `A in ZZ`

25 tháng 8 2021

mọi người giúp với 

11 tháng 12 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y+z}{15+10+6}=\dfrac{62}{31}=2\)

Do đó: x=30; y=20; z=12

11 tháng 12 2021

THAM KHẢO:

a) \(\dfrac{2}{5}.\left(x+\dfrac{1}{2}\right)=1\)

         \(\left(x+\dfrac{1}{2}\right)=1:\dfrac{2}{5}\)

         \(\left(x+\dfrac{1}{2}\right)=1.\dfrac{5}{2}\)

            \(x+\dfrac{1}{2}=\dfrac{5}{2}\)

            \(x=\dfrac{5}{2}-\dfrac{1}{2}\)

 Vậy     \(x=\dfrac{4}{2}=2\)

b) X;Y;Z tỉ lệ nghich với 2;3;5và x+y+z=62

Vì x, y, z tỉ lệ nghịch với 2, 3, 5 nên ta có: 

\(2x=3y=z5=>\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y+z}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{62}{\dfrac{31}{30}}=60\)

+) \(\dfrac{x}{\dfrac{1}{2}}=60=>x=30\)

+) \(\dfrac{y}{\dfrac{1}{3}}=60=>y=20\)

+) \(\dfrac{z}{\dfrac{1}{5}}=60=>z=12\)

Vậy x=30

       y=20

       z=12

Tick cho mình nhé. Chúc bạn học tốt!

25 tháng 8 2021

chắc đề cho x,y chứ x+y=6,x-y=4,xy=5

(làm ra bạn tự thay số vào tính)

a,\(=>A=\left(x+y\right)^2-2xy=.....\)

b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)

c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)

d,\(=>D=\dfrac{x+y}{xy}=.....\)

e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)

25 tháng 8 2021

thanks