3x[x-2]-4x+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(x - 2)/3 = (x + 1)/4`
`(x - 2) . 4 = (x + 1) . 3`
`<=> 4x - 8 = 3x + 3`
`<=> 4x - 3x = 3 + 8`
`<=> (4 - 3)x = 11`
`=> x = 11`
`=>` `x = 11`
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
a: \(\dfrac{x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{x+10}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-\left(x+10\right)}{2\left(x+2\right)}\)
b: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(x-2\right)}\)
\(=\dfrac{3\left(2x-1\right)\left(2x+1\right)}{2\left(x-2\right)\left(x+4\right)}\)
c: \(=\dfrac{4y^2}{7x^4}\cdot\dfrac{35x^2}{-8y}=\dfrac{5}{x^2}\cdot\dfrac{-1}{2}\cdot y=\dfrac{-5y}{2x^2}\)
d: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$
Chỉ có mỗi biểu thức thôi mà không có yêu cầu thì không thể giải quyết bạn nhé.
<=> x^2^2 + 4x^2 + 8^2 + 2.x^2.4x + 2.x^2.8+ 2.4x.8 + 3x.x^2 +3x.4x = 3x.8 + 2x^2
<=> x^4 + 8x^2 + ..............
Rồi bạn tự tính tiếp nhé
Phân tích đa thức thành nhân tử ?
Ta có: \(P=\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
Đặt \(x^2+4x+8=y\)
Khi đó:
\(P=y^2+3xy+2x^2\)
\(P=\left(y^2+xy\right)+\left(2xy+2x^2\right)\)
\(P=y\left(x+y\right)+2x\left(x+y\right)\)
\(P=\left(x+y\right)\left(2x+y\right)\)
\(P=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(P=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
|\(x-\dfrac{1}{2}\)| + 2\(x\) = 6
|\(x-\dfrac{1}{2}\)| = 6 - 2\(x\); 6 - 2\(x\) > 0 ⇒ 6 > 2\(x\) ⇒ \(x\) < 3
\(\left[{}\begin{matrix}x-\dfrac{1}{2}=6-2x\\x-\dfrac{1}{2}=-6+2x\end{matrix}\right.\)
\(\left[{}\begin{matrix}x+2x=6+\dfrac{1}{2}\\2x-x=6-\dfrac{1}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\dfrac{13}{2}\\x=\dfrac{11}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{13}{6}\\x=\dfrac{11}{2}\end{matrix}\right.\)
\(x=\dfrac{11}{2}\) > 3 (loại)
Vậy \(x\) = \(\dfrac{13}{6}\)